Skip to main content
Log in

Multidimensional polynomial Szemerédi theorem in finite fields for polynomials of distinct degrees

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We obtain a polynomial upper bound in the finite-field version of the multidimensional polynomial Szemerédi theorem for distinct-degree polynomials. That is, if P1, …, Pt are nonconstant integer polynomials of distinct degrees and v1, …, vt are nonzero vectors in \(\mathbb{F}_p^D\), we show that each subset of \(\mathbb{F}_p^D\) lacking a nontrivial configuration of the form

$${\bf{x}},{\bf{x}} + {{\bf{v}}_1}{P_1}(y), \ldots,{\bf{x}} + {{\bf{v}}_t}{P_t}(y)$$

has at most O(pDc) elements. In doing so, we apply the notion of Gowers norms along a vector adapted from ergodic theory, which extends the classical concept of Gowers norms on finite abelian groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Bourgain and M.-C. Chang, Nonlinear Roth type theorems in finite fields, Israel Journal of Mathematics 221 (2017), 853–867.

    Article  MathSciNet  Google Scholar 

  2. V. Bergelson and A. Leibman, Polynomial extensions of van der Waerden’s and Szemerédi’s theorems, Journal of the American Mathematical Society 9 (1996), 725–753.

    Article  MathSciNet  Google Scholar 

  3. T. Bloom and J. Maynard, A new upper bound for sets with no square differences, Compositio Mathematica 158 (2022), 1777–1798.

    Article  MathSciNet  Google Scholar 

  4. A. Balog, J. Pelikán, J. Pintz and E. Szemerédi, Difference sets without kth powers, Acta Mathematica Hungarica 65 (1994), 165–187.

    Article  MathSciNet  Google Scholar 

  5. Q. Chu, N. Frantzikinakis and B. Host, Ergodic averages of commuting transformations with distinct degree polynomial iterates, Proceedings of the London Mathematical Society 102 (2011), 801–842.

    Article  MathSciNet  Google Scholar 

  6. Q. Chu, Multiple recurrence for two commuting transformations, Ergodic Theory and Dynamical Systems 31 (2011), 771–792.

    Article  MathSciNet  Google Scholar 

  7. D. Dong, X. Li and W. Sawin, Improved estimates for polynomial Roth type theorems in finite fields, Journal d’Analyse Mathématique 141 (2020), 689–705.

    Article  MathSciNet  Google Scholar 

  8. B. Green, Montréal notes on quadratic Fourier analysis, in Additive Combinatorics, CRM Proceedings & Lecture Notes, Vol. 43, American Mathematical Society, Providence, RI, 2007, pp. 69–102.

    Chapter  Google Scholar 

  9. R. Han, M. T. Lacey and F. Yang, A polynomial Roth theorem for corners in finite fields, Mathematika 67 (2021), 885–896.

    Article  MathSciNet  Google Scholar 

  10. E. Kowalski, Exponential sums over finite fields: elementary methods, https://people.math.ethz.ch/~kowalski/exponential-sums-elementary.pdf.

  11. B. Kuca, Further bounds in the polynomial Szemerédi theorem over finite fields, Acta Arithmetica 198 (2021), 77–108.

    Article  MathSciNet  Google Scholar 

  12. J. Lucier, Intersective sets given by a polynomial, Acta Arithmetica 123 (2006), 57–95.

    Article  MathSciNet  Google Scholar 

  13. S. Peluse, Three-term polynomial progressions in subsets of finite fields, Israel Journal of Mathematics 228 (2018), 379–405.

    Article  MathSciNet  Google Scholar 

  14. S. Peluse, On the polynomial Szemerédi theorem in finite fields, Duke Mathematical Journal 168 (2019), 749–774.

    Article  MathSciNet  Google Scholar 

  15. S. Peluse, Bounds for sets with no polynomial progressions, Forum of Mathematics. Pi 8 (2020).

  16. S. Peluse and S. Prendiville, Quantitative bounds in the non-linear Roth theorem, https://arxiv.org/abs/1903.02592.

  17. S. Peluse and S. Prendiville, A polylogarithmic bound in the nonlinear Roth theorem, International Mathematics Research Notices 2022 (2022), 5658–5684.

    Article  MathSciNet  Google Scholar 

  18. S. Prendiville, Quantitative bounds in the polynomial Szemerédi theorem: the homogeneous case, Discrete Analysis 5 (2017), Article no. 5.

  19. S. Prendiville, Fourier methods in combinatorial number theory, https://www.dropbox.com/s/kuyaq62srdsc375/Fourier+methods+online.pdf?raw=1&sa=Dmp;sntz=1mp;usg=A0vVaw0rzRHVb05tPAfzoTTyZ851.

  20. A. Rice, A maximal extension of the best-known bounds for the Furstenberg–Sárközy theorem, Acta Arithmetica 187 (2019), 1–41.

    Article  MathSciNet  Google Scholar 

  21. A. Sárközy, On difference sets of sequences of integers. I, Acta Mathematica Hungarica 31 (1978), 125–149.

    MathSciNet  Google Scholar 

  22. A. Sárközy, On difference sets of sequences of integers. III, Acta Mathematica Hungarica 31 (1978), 355–386.

    MathSciNet  Google Scholar 

  23. I. D. Shkredov, On a generalization of Szemerédi’s theorem, Proceedings of the London Mathematical Society 93 (2006), 723–760.

    Article  MathSciNet  Google Scholar 

  24. I. D. Shkredov, On a problem of Gowers, Izvestiya. Mathematics 70 (2006), 385–425.

    Article  MathSciNet  Google Scholar 

  25. S. Slijepčević, A polynomial Sárközy–Furstenberg theorem with upper bounds, Acta Mathematica Hungarica 98 (2003), 111–128.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to thank Sean Prendiville for useful conversations and comments on an earlier version of this paper, Donald Robertson for consultations on this project, and an anonymous referee for their detailed suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Borys Kuca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuca, B. Multidimensional polynomial Szemerédi theorem in finite fields for polynomials of distinct degrees. Isr. J. Math. 259, 589–620 (2024). https://doi.org/10.1007/s11856-023-2551-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-023-2551-3

Navigation