Skip to main content
Log in

Ricci curvature and the size of initial data for the Navier–Stokes equations on Einstein manifolds

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

Consider a noncompact Einstein manifold (Mg) with negative Ricci curvature tensor (\({\textrm{Ric}}_{ij}=rg_{ij}\) for a curvature constant \(r<0\)). Denoting by \(\Gamma (TM)\) the set of all vector fields on M, we study the Navier–Stokes equations

$$\begin{aligned} {\left\{ \begin{array}{ll} \partial _t u + \nabla _u u + {\text {grad}}\pi = {\text {div}}(\nabla u + \nabla u^t)^{\sharp },\, {\text {div}}u=0,\\ u|_{t=0}= u_0 \in \Gamma (TM), {\text {div}}u_0=0, \end{array}\right. } \end{aligned}$$

for the vector field \(u\in \Gamma (TM)\). Given any initial datum \(u_0\in \Gamma (TM)\), we prove that if the curvature constant r is large enough, then the Navier–Stokes equations on the Einstein manifold (Mg) always have a unique solution \(u(\cdot ,t)\in \Gamma (TM)\) which is defined for all \(t\ge 0\) with \(u(\cdot ,0)=u_0\). We also prove the exponential decay of solutions under appropriate conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abels, H.: Nonstationary Stokes system with variable viscosity in bounded and unbounded domains. Discrete Contin. Dyn. Syst. (S) 3, 141–157 (2010)

    MathSciNet  Google Scholar 

  2. Chan, C.H., Czubak, M.: Remarks on the weak formulation of the Navier–Stokes equations on the 2D hyperbolic space. Ann. Inst. H. Poincaré C Anal. Non Linéaire 33, 655–698 (2016)

    Article  MathSciNet  Google Scholar 

  3. Chan, C.H., Czubak, M., Disconzi, M.M.: The formulation of the Navier–Stokes equations on Riemannian manifolds. J. Geom. Phys. 121, 335–346 (2017)

    Article  MathSciNet  Google Scholar 

  4. Dalec’kiĭ, Ju.L., Krein, M.G.: Stability of Solutions of Differential Equations in Banach Spaces. Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 43. American Mathematical Society, Providence, RI (1974)

  5. Ebin, D.G., Marsden, J.E.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. of Math. (2) 92, 102–163 (1970)

  6. Farwig, R.: From Jean Leray to the millennium problem: the Navier–Stokes equations. J. Evol. Equ. 21, 3243–3263 (2021)

    Article  MathSciNet  Google Scholar 

  7. Fujita, H., Kato, T.: On the Navier–Stokes initial value problem. Arch. Rational Mech. Anal. 16, 269–315 (1964)

    Article  MathSciNet  Google Scholar 

  8. Geissert, M., Heck, H., Hieber, M.: \(L_p\)-theory of the Navier–Stokes flow in the exterior of a rotating or moving domain. J. Reine Angew. Math. 596, 45–62 (2006)

    MathSciNet  Google Scholar 

  9. Geissert, M., Hieber, M., Nguyen, T.H.: A general approach to time periodic incompressible viscous fluid flow problems. Arch. Ration. Mech. Anal. 220, 1095–1118 (2016)

    Article  MathSciNet  Google Scholar 

  10. Giga, Y.: Solutions for semilinear parabolic equations in \(L^p\) and regularity of weak solutions of the Navier–Stokes system. J. Differential Equations 61, 186–212 (1986)

    Article  Google Scholar 

  11. Giga, Y., Inui, K., Mahalov, A., Matsui, S., Saal, J.: Rotating NS-equations in \(\mathbb{R} ^3_+\) with initial data nondecreasing at infinity: the Ekman boundary layer problem. Arch. Ration. Mech. Anal. 186(2), 177–224 (2007)

    Article  MathSciNet  Google Scholar 

  12. Hebey, E.: Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities. Courant Lectures in Mathematics, AMS, New York (2000)

  13. Huy, N.T.: Invariant manifolds of admissible classes for semi-linear evolution equations. J. Differential Equations 246, 1820–1844 (2009)

    Article  MathSciNet  Google Scholar 

  14. Huy, N.T., Ha, V.T.N.: Navier–Stokes equations on non-compact Einstein manifolds: stability implies periodicity. J. Math. Anal. Appl. 505(2), Paper No. 125544, 13 pp. (2022)

  15. Jost, J.: Riemannian Geometry and Geometric Analysis. Fifth edition. Universitext. Springer, Berlin (2008)

  16. Kato, T.: Strong \(L^p\)-solutions of Navier–Stokes equations in \({{\mathbb{R} }}^n\) with applications to weak solutions. Math. Z. 187, 471–480 (1984)

    Article  MathSciNet  Google Scholar 

  17. Khesin, B., Misiolek, G.: The Euler and Navier–Stokes equations on the hyperbolic plane. Proc. Natl. Acad. Sci. 109, 18324–18326 (2012)

    Article  MathSciNet  Google Scholar 

  18. Kodaira, K.: Harmonic fields in Riemannian manifolds (generalized potential theory). Ann. of Math. (2) 50, 587–665 (1949)

  19. Leray, J.: Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’hydrodynamique. J. Math. Pures Appl. 12, 82 pp. (1933)

  20. Pauqert, J.: Introduction to hyperboloid geometry. Lecture note (2016)

  21. Perron, O.: Die Stabilitätsfrage bei Differentialgleichungen. Math. Z. 32, 703–728 (1930)

    Article  MathSciNet  Google Scholar 

  22. Pierfelice, V.: The incompressible Navier–Stokes equations on non-compact manifolds. J. Geom. Anal. 27(1), 577–617 (2017)

    Article  MathSciNet  Google Scholar 

  23. Temam, R.: Navier–Stokes Equations: Theory and Numerical Analysis. North-Holland, Amsterdam (1977)

    Google Scholar 

  24. Sell, G.R., You, Y.: Dynamics of Evolutionary Equations. Applied Mathematical Sciences, 143. Springer, New York (2002)

  25. Taylor, M.: Partial Differential Equations III: Nonlinear Equations. Second edition. Applied Mathematical Sciences, 117. Springer, New York (2011)

  26. Vu, T.N.H., Nguyen, T.H., Vu, T.M.: Parabolic evolution equations in interpolation spaces: boundedness, stability, and applications. Z. Angew. Math. Phys. 71(2), Paper No. 39, 17 pp. (2020)

  27. Zhang, Q.S.: The ill-posed Navier–Stokes equation on connected sums of \(\mathbb{R} ^3\). Complex Var. Elliptic Eq. 51, 1059–1063 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

We thank the referee for his or her careful reading of the manuscript. His/her corrections improve the appearance of the paper. This work is financially supported by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 101.02-2021.04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thieu Huy Nguyen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.H., Vu, T.N.H. Ricci curvature and the size of initial data for the Navier–Stokes equations on Einstein manifolds. Arch. Math. 122, 83–93 (2024). https://doi.org/10.1007/s00013-023-01923-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-023-01923-5

Keywords

Mathematics Subject Classification

Navigation