Skip to main content
Log in

On a biharmonic elliptic problem with slightly subcritical non-power nonlinearity

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

We study the following biharmonic elliptic problem with slightly subcritical non-power nonlinearity:

$$\begin{aligned} \left\{ \begin{array}{lll} \Delta ^2 u =\frac{|u|^{2^*-2}u}{[\ln (e+|u|)]^\varepsilon }\ \ &{}\textrm{in}\ \Omega , \\ u=\Delta u= 0 \ \ &{} \textrm{on}\ \partial \Omega , \end{array} \right. \end{aligned}$$

where \(2^*=\frac{2n}{n-4}\), \(\Omega \) is a bounded smooth domain in \(\mathbb {R}^n\) with \(n\ge 5\), \(\varepsilon \) is a small positive parameter. By finite-dimensional Lyapunov–Schmidt reduction, we construct a single bubble solution, which concentrates at the non-degenerate critical point of the Robin function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Alarcón, S., Pistoia, A.: A Paneitz-type problem in pierced domains. Diff. Integr. Equ. 28, 823–838 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Bahri, A.: Critical Points at Infinity in Some Variational Problems. Pitman Research Notes in Mathematics Series, vol. 182. Longman, New York (1989)

    MATH  Google Scholar 

  3. Bahri, A., Coron, J.: On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain. Commun. Pure Appl. Math. 41(3), 253–294 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bahri, A., Li, Y., Rey, O.: On a variational problem with lack of compactness: the topological effect of the critical points at infinity. Calc. Var. Partial. Differ. Equ. 3(1), 67–93 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ben Ayed, M., Fourti, H.: Multispike solutions for a slightly subcritical elliptic problem with non-power nonlinearity. Discrete Contin. Dyn. Syst. 43(2), 661–687 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ben Ayed, M., Ghoudi, R.: Profile and existence of sign-changing solutions to an elliptic subcritical equation. Commun. Contemp. Math. 10(6), 1183–1216 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dammak, Y., Ghoudi, R.: Sign-changing tower of bubbles to an elliptic subcritical equation. Commun. Contemp. Math. 21(7), 1850052 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ben Ayed, M., Hammami, M.: On a fourth order elliptic equation with critical nonlinearity in dimension six. Nonlinear Anal. 64(5), 924–957 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ben Ayed, M., El Mehdi, K.: On a biharmonic equation involving nearly critical exponent. NoDEA Nonlinear Differ. Equ. Appl. 13(4), 485–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Castro, A., Pardo, R.: A priori bounds for positive solutions of subcritical elliptic equations. Rev. Mat. Complut. 28, 715–731 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Castro, A., Pardo, R.: A priori estimates for positive solutions to subcritical elliptic problems in a class of non-convex regions. Discrete Contin. Dyn. Syst. Ser. B 22(3), 783–790 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Chen, W., Huang, X.: Sign-Changing Bubble Tower Solutions for a Paneitz-Type Problem. arXiv:2202.06006 (2022)

  13. Chou, K., Geng, D.: Asymptotics of positive solutions for a biharmonic equation involving critical exponent. Diff. Integr. Equ. 13, 921–940 (2000)

    MathSciNet  MATH  Google Scholar 

  14. Clapp, M., Pardo, R., Pistoia, A., Saldaña, A.: A solution to a slightly subcritical elliptic problem with non-power nonlinearity. J. Differ. Equ. 275, 418–446 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Djadli, Z., Hebey, E., Ledoux, M.: Paneitz type operators and applications. Duke Math. J. 104, 129–169 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Djadli, Z., Malchioldi, A., Ould Ahmedou, M.: Prescribing a fourth order conformal invariant on the standard sphere-part I: a perturbation result. Commun. Contemp. Math. 4, 375–408 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ebobisse, F., Ould Ahmedou, M.: On a nonlinear fourth order elliptic equation involving the critical Sobolev exponent. Nonlinear Anal. TMA 52, 1535–1552 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Felli, V.: Existence of conformal metrics on \(S^N\) with prescribed fourth-order invariant. Adv. Differ. Equ. 7, 47–76 (2002)

    MATH  Google Scholar 

  19. Gazzola, F., Grunau, H., Squassina, M.: Existence and nonexistence results for critical growth biharmonic elliptic equations. Calc. Var. Partial. Differ. Equ. 18, 117–143 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Geng, D.: On blow-up of positive solutions for a biharmonic equation involving nearly critical exponent. Calc. Var. Partial. Differ. Equ. 24, 2333–2370 (1999)

    MathSciNet  MATH  Google Scholar 

  21. Han, Z.: Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent. Ann. Inst. H. Poincaré Anal. Non Linéaire 8, 159–174 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, Y.: Prescribing scalar curvature on \({\cal{S} }^{n}\) and related topics, Part I. J. Differ. Equ. 120, 319–410 (1995)

    Article  Google Scholar 

  23. Kazdan, J., Warner, F.: Remarks on some quasilinear elliptic equations. Commun. Pure Appl. Math. 28, 567–597 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lin, C.: A classification of solutions of a conformally invariant fourth order equation in \({\mathbb{R} }^{n}\). Comment. Math. Helv. 73(2), 206–231 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, Z., Liu, Z., Xu, W.: Non-power type perturbation for the critical Hénon problem. J. Math. Phys. 64(2), 19 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lu, G., Wei, J.: On a Sobolev inequality with remainder terms. Proc. Am. Math. Soc. 128, 75–84 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mavinga, N., Pardo, R.: A priori bounds and existence of positive solutions for subcritical semilinear elliptic systems. J. Math. Anal. Appl. 449(2), 1172–1188 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. El Mehdi, K.: Single blow-up solutions for a slightly subcritical biharmonic equation. Abstr. Appl. Anal. Art. ID 18387, 20 pp (2006)

  29. Musso, M., Pistoia, A.: Multispike solutions for a nonlinear elliptic problem involving critical Sobolev exponent. Indiana Univ. Math. J. 5, 541–579 (2002)

    MathSciNet  MATH  Google Scholar 

  30. Musso, M., Pistoia, A.: Tower of bubbles for almost critical problems in general domains. J. Math. Pure Appl. 93, 1–40 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pardo, R.: On the existence of a priori bounds for positive solutions of elliptic problems, II. Rev. Integr. Temas Mat. 37(1), 113–148 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Pistoia, A., Weth, T.: Sign-changing bubble tower solutions in a slightly subcritical semilinear Dirichlet problem. Ann. Inst. H. Poincaré Anal. Non Linéaire 24(2), 325–340 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pohozaev, S.: On the eigenfunctions of the equation \(u+\delta f(u)=0\). Sov. Math. Dokl. 6, 1408–1411 (1965)

    MATH  Google Scholar 

  34. Takahashi, F.: Asymptotic behavior of least energy solutions for a biharmonic problem with nearly critical growth. Asymptot. Anal. 60(3–4), 213–226 (2008)

    MathSciNet  MATH  Google Scholar 

  35. Takahashi, F.: An asymptotic nondegeneracy result for a biharmonic equation with the nearly critical growth. NoDEA Nonlinear Differ. Equ. Appl. 15(4–5), 623–637 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Van der Vorst, R.: Fourth order elliptic equations with critical growth. C. R. Acad. Sci. Paris 320, 295–299 (1995)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research has been supported by the National Natural Science Foundation of China (No. 11971392) and Graduate Research and Innovation Project of Southwest University (No. SWUB23038).

Author information

Authors and Affiliations

Authors

Contributions

SD and FY wrote the main manuscript text and reviewed the manuscript.

Corresponding author

Correspondence to Fang Yu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Now, we prove the estimates in Lemma 2.6.

Proof of Lemma 2.6

(i):

From (2.3), we obtain

$$\begin{aligned} \frac{\partial f_\varepsilon (u)}{\partial \varepsilon } =-\frac{|u|^{p-1}u}{[\ln (e+|u|)]^\varepsilon }\,\ln \ln (e+|u|), \end{aligned}$$

which follows that:

$$\begin{aligned} \left| \frac{\partial f_\varepsilon (u)}{\partial \varepsilon }\right| \le |u|^{p}\ln \ln (\textrm{e}+|u|), \end{aligned}$$

and by the mean value theorem, we get the proof of (i).

(ii):

There holds

$$\begin{aligned} f_\varepsilon '(u)=\frac{|u|^{p-1}}{[\ln (\textrm{e}+|u|)]^\varepsilon } \left( p-\frac{\varepsilon |u|}{(\textrm{e}+|u|)\ln (\textrm{e}+|u|)} \right) . \end{aligned}$$
(4.1)

Moreover, since \(0\le \frac{|u|}{\varepsilon +|u|}\le 1,\) and \(0\le \frac{1}{\ln (\textsf{e}+|u|)}\le 1\), we get the result (ii).

(iii):

From (4.1), we have

$$\begin{aligned} \frac{\partial f_\varepsilon ^{'}(u)}{\partial \varepsilon } =&-\frac{|u|^{p-1}\ln \ln (\textrm{e}+|u|)}{[\ln (\textrm{e}+|u|)]^\varepsilon } \left( p-\frac{\varepsilon |u|}{(\textrm{e}+|u|)\ln (\textrm{e}+|u|)} \right) \\&- \frac{|u|^{p}}{(\textrm{e}+|u|)[\ln (\textrm{e}+|u|)]^{\varepsilon +1}}. \end{aligned}$$

Thus, for \(\varepsilon \) small enough, one has

$$\begin{aligned} \left| \frac{\partial f_{\varepsilon }^{\prime }(u)}{\partial \varepsilon }\right| \le&p\frac{|u|^{p-1}\ln \ln (e+|u|)}{[\ln (e+|u|)]^{\varepsilon }} +\frac{|u|^{p-1}}{[\ln (e+|u|)]^{\varepsilon +1}} \\ \le&|u|^{p-1}\left( p\ln \ln (\textrm{e}+|u|) +\frac{1}{\ln (\textrm{e}+|u|)}\right) . \end{aligned}$$

Finally, the result follows by the mean value theorem.

(iv):

We have

$$\begin{aligned} f_{\varepsilon }^{\prime \prime }(u) =&\frac{\varepsilon |u|^{p-2}u}{[\ln (e+|u|)]^{\varepsilon }} \left( \frac{|u|-e\ln (e+|u|)}{(e+|u|)^{2}[\ln (e+|u|)]^{2}}\right) \\&+ \frac{|u|^{p-2}u}{[\ln (\textrm{e}+|u|)]^\varepsilon } \left( p-1-\frac{\varepsilon |u|}{(\textrm{e}+|u|)\ln (\textrm{e}+|u|)}\right) \\&\left( p-\frac{\varepsilon |u|}{(\textrm{e}+|u|)\ln (\textrm{e}+|u|)}\right) . \end{aligned}$$

Moreover, for \(\varepsilon \) small enough, one has

$$\begin{aligned} |f_\varepsilon ^{\prime \prime }(u)|\le C|u|^{p-2}. \end{aligned}$$

If \(n\le 12\), it holds \(p-2=\frac{12-n}{n-4}\ge 0\), for some \(t\in (0,1)\), the mean value theorem shows that

$$\begin{aligned} |f_\varepsilon ^{\prime }(u+v)-f_\varepsilon ^{\prime }(u)|=|f_\varepsilon ^{\prime \prime }(u+tv)||v|\le C|u+tv|^{p-2}|v|\le C(|u|^{p-2}+|v|^{p-2})|v|. \end{aligned}$$

If \(n\ge 13\), let \(q=p-1\in (0,1)\) and

$$\begin{aligned} |f_{\varepsilon }^{\prime }(u+v)-f_{\varepsilon }^{\prime }(u)| \le&p\left| \frac{|u+v|^{q}}{[\ln (\textrm{e}+|u+v|)]^{\varepsilon }} -\frac{|u|^{q}}{[\ln (\textrm{e}+|u|)]^{\varepsilon }}\right| \\&+ \varepsilon \left| \frac{|u+v|^{p}}{(\textrm{e}+|u+v|) [\ln (\textrm{e}+|u+v|)]^{\varepsilon +1}}\right. \\&\left. -\frac{|u|^{p}}{(\textrm{e}+|u|) [\ln (\textrm{e}+|u|)]^{\varepsilon +1}}\right| \\ =&F_1+F_2. \end{aligned}$$

There holds

$$\begin{aligned} F_{2}\le C\varepsilon (|u|^{q}+|v|^{q}). \end{aligned}$$

For \( F_1\), for any fixed \(v\ne 0\), let \(x=\frac{u}{v}\), then

$$\begin{aligned}&\frac{1}{|v|^q}\left| \frac{|u+v|^q}{[\ln (\textrm{e}+|u+v|)]^\varepsilon } -\frac{|u|^q}{[\ln (\textrm{e}+|u|)]^\varepsilon }\right| \\&\quad = \left| \frac{|x+1|^{q}}{[\ln (e+|v||x+1|)]^{\varepsilon }} -\frac{|x|^{q}}{[\ln (e+|v||x|)]^{\varepsilon }}\right| = g(x). \end{aligned}$$

The function g is symmetric with respect to \(-\frac{1}{2}\), that is, \(g(x)=g(-x-1)\); it is increasing in \([-\frac{1}{2},0]\) and decreasing in \([0,\infty )\), and \(g(0)\le 1\). Hence

$$\begin{aligned} F_{1}\le p|v|^{q}. \end{aligned}$$

Combining \( F_1\) and \( F_2\), we obtain (iv).

(v):

There holds

$$\begin{aligned} \ln \ln \left( \textrm{e}+\delta ^{-r}u\right) =&\ln \ln (\delta ^{-r}(\delta ^{r}\textrm{e}+u))\\ =&\ln \left( \ln \delta ^{-r}+\ln (\textrm{e}^{1-r|\ln \delta |}+u)\right) \\ =&\ln \bigg [\ln \delta ^{-r}\Big (1+\frac{\ln (\textrm{e}^{1-r|\ln \delta |}+u)}{\ln \delta ^{-r}}\Big )\bigg ] \\ =&\ln \ln (\delta ^{-r} ) +\ln \Big (1+\frac{\ln (\textrm{e}^{1-r|\ln \delta |}+u)}{r|\ln \delta |}\Big ). \end{aligned}$$
(vi):

Let

$$\begin{aligned} g(t)=\ln \Big [1+\frac{t}{r}\ln (\textrm{e}^{1-\frac{r}{t}}+u)\Big ],\quad t>0. \end{aligned}$$

Then, from (v) and L’Hôpital’s rule, we have

$$\begin{aligned} {\text {lim}}_{t\rightarrow 0}{\frac{g(t)}{t}}&=\lim _{t\rightarrow 0}g^{\prime }(t)=\lim _{t\rightarrow 0}\frac{\frac{1}{r}\ln (\textrm{e}^{1-\frac{r}{t}}+u)+\frac{1}{t}\textrm{e}^{1-\frac{r}{t}}(\textrm{e}^{1-\frac{r}{t}}+u)^{-1}}{1+\frac{t}{r}\ln (\textrm{e}^{1-\frac{r}{t}}+u)} \\&=\frac{1}{r}\ln u. \end{aligned}$$

Set \(t=|\ln \delta |^{-1}\), we finish the proof of (vi).

\(\square \)

In the following, we show the proof of \(P_3\) in Proposition 3.1.

Lemma 4.1

There holds

$$\begin{aligned} P_3= & {} \int \limits _\Omega \Big (f_0(PU_{ \delta ,\xi })-f_\varepsilon (PU_{ \delta ,\xi }) \Big ) Z^l_{ \delta ,\xi }\text {d}x \\= & {} \left\{ \begin{array}{lll} - \frac{2d}{n-4}M\frac{\varepsilon }{|\ln \delta |} +o\Big (\frac{\varepsilon }{|\ln \delta |}\Big )\ \ &{}\textrm{if}\ l=0, \\ O(\varepsilon \delta ^{\frac{n-4}{2}}\ln |\ln \delta |)\ \ &{}\textrm{if}\ l=1,\ldots ,n, \end{array} \right. \end{aligned}$$

where \(M=-\int \limits _{\mathbb {R}^n}U^p(\ln U)Z_0\text {d}z =\frac{(n-4)^2\alpha _n^{2^*}\pi ^{\frac{n-2}{2}}}{2 n}\frac{\Gamma (\frac{n-2}{2})}{\Gamma (n+1)}>0\). Moreover

$$\begin{aligned} \varepsilon \delta ^{\frac{n-4}{2}}\ln |\ln \delta | =&d \delta ^{\frac{3n}{2}-6}|\ln \delta |\ln |\ln \delta | = \left\{ \begin{array}{lll} o( \delta ^{n-4}) \ \ &{}\textrm{if}\ 5\le n\le 6, \\ o( \delta ^{n-3}) \ \ &{}\textrm{if}\ n\ge 7. \end{array} \right. \end{aligned}$$

Proof

By Taylor’s expansion with respect of \(\varepsilon \), we have

$$\begin{aligned}&\int \limits _\Omega \Big (f_0(PU_{ \delta ,\xi })-f_\varepsilon (PU_{ \delta ,\xi }) \Big ) Z^l_{ \delta ,\xi }\text {d}x\nonumber \\&\quad = \varepsilon \int \limits _\Omega (PU_{ \delta ,\xi })^p\ln \ln (e+PU_{ \delta ,\xi })Z^l_{ \delta ,\xi }\text {d}x -\varepsilon ^2\nonumber \\&\qquad \int \limits _\Omega (PU_{ \delta ,\xi })^p \Big (\ln \ln (e+PU_{ \delta ,\xi })\Big )^2 Z^l_{ \delta ,\xi } \text {d}x, \end{aligned}$$
(4.2)

where Lemma 2.6 implies that

$$\begin{aligned} \bigg |\int \limits _\Omega (PU_{ \delta ,\xi })^p \Big (\ln \ln (e+PU_{ \delta ,\xi })\Big )^2 Z^l_{ \delta ,\xi } \text {d}x\bigg |&\le \int \limits _\Omega U_{ \delta ,\xi }^p\Big (\ln \ln (e+ U_{ \delta ,\xi })\Big )^2 |Z^l_{ \delta ,\xi }|\text {d}x\nonumber \\&=O\Big ( (\ln |\ln \delta |)^2\Big ). \end{aligned}$$
(4.3)

For the first integral in (4.2), we set \(g(u)=u^p\ln \ln (e+u)\), then the mean value theorem gives that

$$\begin{aligned} 0\le g(u)-g(v)\le Cu^{p-1}\Big (\ln \ln (e+u)+1\Big )(u-v)\quad \text{ if }\ 0\le v\le u; \end{aligned}$$

it means that

$$\begin{aligned}&\int \limits _\Omega (PU_{ \delta ,\xi })^p\ln \ln (e+PU_{ \delta ,\xi }) Z^l_{ \delta ,\xi }\text {d}x\\&\quad = \int \limits _\Omega U_{ \delta ,\xi }^p \ln \ln (e+U_{ \delta ,\xi })Z^l_{ \delta ,\xi }\text {d}x\\&\qquad + \int \limits _\Omega U_{ \delta ,\xi }^{p-1}\Big (\ln \ln (e+ U_{ \delta ,\xi } )+1\Big )( U_{ \delta ,\xi }- PU_{ \delta ,\xi } ) Z^l_{ \delta ,\xi }\text {d}x. \end{aligned}$$

By Lemma 2.6 and (2.12), there holds

$$\begin{aligned}&\int \limits _\Omega U_{ \delta ,\xi }^{p-1}(x)\Big [\ln \ln \Big (e+ U_{ \delta ,\xi } (x)\Big )+1\Big ]\Big ( U_{ \delta ,\xi }(x)- PU_{ \delta ,\xi } (x)\Big ) Z^l_{ \delta ,\xi }(x)\text {d}x\\&\quad \le C \delta ^{ \frac{n-4}{2}}(\ln |\ln \delta |+1 )\int \limits _{\mathbb {R}^n} U^{p-1}(z) \Big ( H( \delta z+\xi ,\xi )+O( \delta )\Big )Z_l(z)\text {d}z\\&\quad \le C \delta ^{ \frac{n-4}{2}}\ln |\ln \delta | \Big (H (\xi ,\xi )+O( \delta )\Big )\int \limits _{\mathbb {R}^n} U^{p-1}(z)Z_l(z)\text {d}z \\&\quad = O\Big ( \delta ^{\frac{n-4}{2}}\ln |\ln \delta |\Big ). \end{aligned}$$

From Lemma 2.6 and (3.4), one has

$$\begin{aligned}&\int \limits _\Omega U_{ \delta ,\xi }^p(x)\ln \ln \left( e+U_{ \delta ,\xi }(x)\right) Z^l_{ \delta ,\xi }(x)\text {d}x\nonumber \\&\quad = \delta ^{n-\frac{n+4}{2}-\frac{n-4}{2}}\int \limits _{\frac{\Omega -\xi }{ \delta }} U^p (z)\ln \ln \left( e+ \delta ^{ -\frac{n-4}{2}} U(z)\right) Z_l(z)\text {d}z\nonumber \\&\quad = \ln \ln ( \delta ^{ -\frac{n-4}{2}} )\int \limits _{\frac{\Omega -\xi }{ \delta }}U^p (z)Z_l(z)\text {d}z\nonumber \\&\qquad +\frac{1}{|\ln \delta |} \int \limits _{\frac{\Omega -\xi }{ \delta }}U^p (z)\bigg [|\ln \delta |\ln \bigg (1+\frac{ \ln \Big (e^{1-\frac{n-4}{2}|\ln \delta |}+U(z) \Big )}{\frac{n-4}{2}|\ln \delta |}\bigg )\bigg ]Z_l(z)\text {d}z.\nonumber \\ \end{aligned}$$
(4.4)

Moreover, let \(\psi (z)=U^p (z)\bigg [|\ln \delta |\ln \bigg (1+\frac{ \ln \Big (e^{1-\frac{n-4}{2}|\ln \delta |}+U(z) \Big )}{\frac{n-4}{2}|\ln \delta |}\bigg )\bigg ]Z_l(z)\) for \(l=1,\ldots ,n\), and it follows that \(\int _{\mathbb {R}^n}\psi (z)\text {d}z=0\), since \(\psi (z)\) is a odd function. Further, using Lemma 2.6, direct calculations show that

$$\begin{aligned}&\int \limits _{\mathbb {R}^n}\psi (z)\text {d}z-\int \limits _{\frac{\Omega -\xi }{ \delta }}\psi (z)\text {d}z=\int \limits _{\mathbb {R}^n \backslash \frac{\Omega -\xi }{ \delta }}\psi (z)\text {d}z\\&\quad \le C \bigg [|\ln \delta |\ln \bigg (1+\frac{ \ln \Big (e^{1-\frac{n-4}{2}|\ln \delta |}+\alpha _n \Big )}{\frac{n-4}{2}|\ln \delta |}\bigg )\bigg ]\int \limits _{\mathbb {R}^n \backslash \frac{\Omega -\xi }{ \delta }}U^p (z)|Z_l(z)|\text {d}z\\&\quad \le C\Big (\frac{2}{n-4}\ln \alpha _n+o(1)\Big ) \delta ^{ n+1} =O( \delta ^{ n+1}). \end{aligned}$$

Hence, for \( \delta \) small enough, we conclude that

$$\begin{aligned} \int \limits _\Omega U_{ \delta ,\xi }^p\ln \ln (e+ U_{ \delta ,\xi } )Z^l_{ \delta ,\xi }\text {d}x = O( \delta ^{ n+1}\ln |\ln \delta |)=o( \delta ^n). \end{aligned}$$
(4.5)

From (4.2), (4.3), and (4.5), we finish the proof for \(l=1,\ldots ,n\).

When \(l=0\), from (3.4), we get \(\int _{\mathbb {R}^n}U^pZ_0\text {d}z=0\), and also, \(\int _{\mathbb {R}^n \backslash \frac{\Omega -\xi }{ \delta }}U^pZ_0\text {d}z=0\); according to (4.4) and Lemma 2.6, there holds

$$\begin{aligned}&\int \limits _\Omega U_{ \delta ,\xi }^p(x)\ln \ln (e+ U_{ \delta ,\xi }(x) )Z^0_{ \delta ,\xi }(x)\text {d}x \\&\quad = \frac{1}{|\ln \delta |}\frac{2}{n-4}\int \limits _{\mathbb {R}^n} U^p (z)\ln ( U(z))Z_0(z)\text {d}z +o\Big (\frac{1}{|\ln \delta |}\Big ). \end{aligned}$$

Finally, let \(\mathcal {B}(\cdot ,\cdot )\) stands for the common Beta function, then by a fact that \(|\partial B_1(0)|=\frac{2\pi ^{\frac{n}{4}}}{\Gamma (\frac{n}{4})}\), one has

$$\begin{aligned} M =&-|\partial B_1(0)|\frac{(n-4)\alpha _n^{2^*}}{2}\int \limits _0^\infty \frac{r^{n-1}}{(1+r^2)^{\frac{n+4}{2}}}\ln \bigg (\frac{1}{(1+r^2)^{\frac{n-4}{2}}}\bigg ) \frac{r^2-1}{(1+r^2)^{\frac{n-2}{2}}}\text {d}r\\ =&\frac{(n-4)^2\alpha _n^{2^*}}{2}\frac{2\pi ^{\frac{n-2}{2}}}{\Gamma (\frac{n-2}{2})} \int \limits _0^\infty \frac{r^{n-1}(r^2-1)}{(1+r^2)^{n+1}} \ln (1+r^2)\text {d}r\\ =&\frac{(n-4)^2\alpha _n^{2^*}\pi ^{\frac{n-2}{2}}}{2 n \Gamma (\frac{n-2}{2})} \int \limits _0^\infty \bigg (\frac{r }{(1+r^2)}\bigg )^n\frac{2r}{1+r^2}\text {d}r\\ =&\frac{(n-4)^2\alpha _n^{2^*}\pi ^{\frac{n-2}{2}}}{2 n\Gamma (\frac{n-2}{2})} \int \limits _0^\infty \frac{s^{\frac{n-4}{2}} }{(1+s)^{n+1}} \text {d}s\\ =&\frac{(n-4)^2\alpha _n^{2^*}\pi ^{\frac{n-2}{2}}}{2 n\Gamma (\frac{n-2}{2})}\mathcal {B}\Big (\frac{n-4}{2}+1,\frac{n-4}{2}\Big )\\ =&\frac{(n-4)^2\alpha _n^{2^*}\pi ^{\frac{n-2}{2}}}{2 n\Gamma (\frac{n-2}{2})}\frac{\Gamma (\frac{n-4}{2}+1)\Gamma (\frac{n-2}{2})}{\Gamma (n+1)} = \frac{(n-4)^2\alpha _n^{2^*}\pi ^{\frac{n-2}{2}}}{2 n}\frac{\Gamma (\frac{n-2}{2})}{\Gamma (n+1)}. \end{aligned}$$

From above all estimations, the proof of this lemma is accomplished. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, S., Yu, F. On a biharmonic elliptic problem with slightly subcritical non-power nonlinearity. J. Fixed Point Theory Appl. 25, 82 (2023). https://doi.org/10.1007/s11784-023-01084-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11784-023-01084-6

Keywords

Mathematics Subject Classification

Navigation