Skip to main content
Log in

Comprehensive Analysis of Gut Microbiota Alteration in the Patients and Animal Models with Polycystic Ovary Syndrome

  • Microbial Pathogenesis and Host-Microbe Interaction
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Polycystic ovary syndrome (PCOS) is a common disease of endocrine–metabolic disorder, and its etiology remains largely unknown. The gut microbiota is possibly involved in PCOS, while the association remains unclear. The comprehensive analysis combining gut microbiota with PCOS typical symptoms was performed to analyze the role of gut microbiota in PCOS in this study. The clinical patients and letrozole-induced animal models were determined on PCOS indexes and gut microbiota, and fecal microbiota transplantation (FMT) was conducted. Results indicated that the animal models displayed typical PCOS symptoms, including disordered estrous cycles, elevated testosterone levels, and ovarian morphological change; meanwhile, the symptoms were improved after FMT. Furthermore, the microbial diversity exhibited disordered, and the abundance of the genus Ruminococcus and Lactobacillus showed a consistent trend in PCOS rats and patients. The microbiota diversity and several key genera were restored subjected to FMT, and correlation analysis also supported relevant conclusions. Moreover, LEfSe analysis showed that Gemmiger, Flexispira, and Eubacterium were overrepresented in PCOS groups. Overall, the results indicate the involvement of gut microbiota in PCOS and its possible alleviation of endocrinal and reproductive dysfunctions through several special bacteria taxa, which can function as the biomarker or potential target for diagnosis and treatment. These results can provide the new insights for treatment and prevention strategies of PCOS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Raw reads of 16S rRNA gene sequencing data in this study were submitted and available in the Sequence Read Archive database of the National Center for Biotechnology Information (NCBI) in the bioproject PRJNA866344 with accession numbers from SAMN30161722 to SAMN30161765.

References

  • Aflatounian, A., Edwards, M. C., Rodriguez Paris, V., Bertoldo, M. J., Desai, R., Gilchrist, R. B., Ledger, W. L., Handelsman, D. J., & Walters, K. A. (2020). Androgen signaling pathways driving reproductive and metabolic phenotypes in a PCOS mouse model. Journal of Endocrinology, 245, 381–395.

    Article  CAS  PubMed  Google Scholar 

  • Baumann, A., Nier, A., Hernández-Arriaga, A., Brandt, A., Lorenzo Pisarello, M. J., Jin, C. J., Pilar, E., Camarinha-Silva, A., Schattenberg, J. M., & Bergheim, I. (2021). Toll-like receptor 1 as a possible target in non-alcoholic fatty liver disease. Scientific Reports, 11, 17815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bokulich, N. A., Kaehler, B. D., Rideout, J. R., Dillon, M., Bolyen, E., Knight, R., Huttley, G. A., & Gregory Caporaso, J. (2018). Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome, 6, 90.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., et al. (2018). QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. PeerJ Preprints, 6, e27295v2.

    Google Scholar 

  • Brennan, C. A., & Garrett, W. S. (2016). Gut microbiota, inflammation, and colorectal cancer. Annual Review of Microbiology, 70, 395–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J., & Holmes, S. P. (2015). DADA2: High resolution sample inference from amplicon data. bioRxiv. https://doi.org/10.1101/024034

    Article  Google Scholar 

  • Chang, Z. P., Deng, G. F., Shao, Y. Y., Xu, D., Zhao, Y. N., Sun, Y. F., Zhang, S. Q., Hou, R. G., & Liu, J. J. (2021). Shaoyao-Gancao Decoction ameliorates the inflammation state in polycystic ovary syndrome rats via remodeling gut microbiota and suppressing the TLR4/NF-κB pathway. Frontiers in Pharmacology, 12, 670054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clemente, J. C., Ursell, L. K., Parfrey, L. W., & Knight, R. (2012). The impact of the gut microbiota on human health: An integrative view. Cell, 148, 1258–1270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuccherini, B., Chua, K., Gill, V., Weir, S., Wray, B., Stewart, D., Nelson, D., Fuss, I., & Strober, W. (2000). Bacteremia and skin/bone infections in two patients with X-linked agammaglobulinemia caused by an unusual organism related to Flexispira/Helicobacter species. Clinical Immunology, 97, 121–129.

    Article  CAS  PubMed  Google Scholar 

  • Diamanti-Kandarakis, E., Papailiou, J., & Palimeri, S. (2006). Hyperandrogenemia: Pathophysiology and its role in ovulatory dysfunction in PCOS. Pediatric Endocrinology Reviews, 3, 198–204.

    PubMed  Google Scholar 

  • Franik, S., Kremer, J. A., Nelen, W. L., & Farquhar, C. (2014). Aromatase inhibitors for subfertile women with polycystic ovary syndrome. Cochrane Database of Systematic Reviews, 2, CD010287. https://doi.org/10.1002/14651858.cd010287.pub2

    Article  Google Scholar 

  • Gomes, A. C., Hoffmann, C., & Mota, J. F. (2018). The human gut microbiota: Metabolism and perspective in obesity. Gut Microbes, 9, 308–325.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goodarzi, M. O., Dumesic, D. A., Chazenbalk, G., & Azziz, R. (2011). Polycystic ovary syndrome: Etiology, pathogenesis and diagnosis. Nature Reviews Endocrinology, 7, 219–231.

    Article  CAS  PubMed  Google Scholar 

  • Guo, Y., Qi, Y., Yang, X., Zhao, L., Wen, S., Liu, Y., & Tang, L. (2016). Association between polycystic ovary syndrome and gut microbiota. PLoS ONE, 11, e0153196.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo, J., Shao, J., Yang, Y., Niu, X., Liao, J., Zhao, Q., Wang, D., Li, S., & Hu, J. (2021). Gut microbiota in patients with polycystic ovary syndrome: A systematic review. Reproductive Sciences, 29, 69–83.

    Article  PubMed  Google Scholar 

  • Hayes, M. G., Urbanek, M., Ehrmann, D. A., Armstrong, L. L., Lee, J. Y., Sisk, R., Karaderi, T., Barber, T. M., McCarthy, M. I., Franks, S., et al. (2015). Genome-wide association of polycystic ovary syndrome implicates alterations in gonadotropin secretion in European ancestry populations. Nature Communications, 6, 7502.

    Article  CAS  PubMed  Google Scholar 

  • He, Y., Wang, Q., Li, X., Wang, G., Zhao, J., Zhang, H., & Chen, W. (2020). Lactic acid bacteria alleviate polycystic ovarian syndrome by regulating sex hormone related gut microbiota. Food & Function, 11, 5192–5204.

    Article  CAS  Google Scholar 

  • Insenser, M., Murri, M., Del Campo, R., Martínez-García, M. Á., Fernández-Durán, E., & Escobar-Morreale, H. F. (2018). Gut microbiota and the polycystic ovary syndrome: Influence of sex, sex hormones, and obesity. Journal of Clinical Endocrinology and Metabolism, 103, 2552–2562.

    Article  PubMed  Google Scholar 

  • Jobira, B., Frank, D. N., Pyle, L., Silveira, L. J., Kelsey, M. M., Garcia-Reyes, Y., Robertson, C. E., Ir, D., Nadeau, K. J., & Cree-Green, M. (2020). Obese adolescents with PCOS have altered biodiversity and relative abundance in gastrointestinal microbiota. Journal of Clinical Endocrinology and Metabolism, 105, e2134–e2144.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jumpertz, R., Le, D. S., Turnbaugh, P. J., Trinidad, C., Bogardus, C., Gordon, J. I., & Krakoff, J. (2011). Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. The American Journal of Clinical Nutrition, 94, 58–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kafali, H., Iriadam, M., Ozardali, I., & Demir, N. (2004). Letrozole-induced polycystic ovaries in the rat: A new model for cystic ovarian disease. Archives of Medical Research, 35, 103–108.

    Article  CAS  PubMed  Google Scholar 

  • Kakoly, N. S., Khomami, M. B., Joham, A. E., Cooray, S. D., Misso, M. L., Norman, R. J., Harrison, C. L., Ranasinha, S., Teede, H. J., & Moran, L. J. (2018). Ethnicity, obesity and the prevalence of impaired glucose tolerance and type 2 diabetes in PCOS: A systematic review and meta-regression. Human Reproduction Update, 24, 455–467.

    Article  CAS  PubMed  Google Scholar 

  • La Marca, A., Egbe, T. O., Morgante, G., Paglia, T., Ciani, A., & De Leo, V. (2000). Metformin treatment reduces ovarian cytochrome P-450c17α response to human chorionic gonadotrophin in women with insulin resistance-related polycystic ovary syndrome. Human Reproduction, 15, 21–23.

    Article  PubMed  Google Scholar 

  • Lee, C. J., Sears, C. L., & Maruthur, N. (2020). Gut microbiome and its role in obesity and insulin resistance. Annals of the New York Academy of Sciences, 1461, 37–52.

    Article  PubMed  Google Scholar 

  • Li, F., Jiang, C., Krausz, K. W., Li, Y., Albert, I., Hao, H., Fabre, K. M., Mitchell, J. B., Patterson, A. D., & Gonzalez, F. J. (2013). Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity. Nature Communications, 4, 2384.

    Article  PubMed  Google Scholar 

  • Li, X., Feng, Y., Lin, J. F., Billig, H., & Shao, R. (2014). Endometrial progesterone resistance and PCOS. Journal of Biomedical Science, 21, 2.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, N., Li, Y., Qian, C., Liu, Q., Cao, W., Ma, M., He, R., Chen, R., Geng, R., & Liu, Y. (2021). Dysbiosis of the saliva microbiome in patients with polycystic ovary syndrome. Frontiers in Cellular and Infection Microbiology, 10, 624504.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin, H., An, Y., Tang, H., & Wang, Y. (2019). Alterations of bile acids and gut microbiota in obesity induced by high fat diet in rat model. Journal of Agricultural and Food Chemistry, 67, 3624–3632.

    Article  CAS  PubMed  Google Scholar 

  • Lin, W., Wen, L., Wen, J., & Xiang, G. (2021). Effects of sleeve gastrectomy on fecal gut microbiota and short-chain fatty acid content in a rat model of polycystic ovary syndrome. Frontiers in Endocrinology, 12, 747888.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindheim, L., Bashir, M., Münzker, J., Trummer, C., Zachhuber, V., Leber, B., Horvath, A., Pieber, T. R., Gorkiewicz, G., Stadlbauer, V., et al. (2017). Alterations in gut microbiome composition and barrier function are associated with reproductive and metabolic defects in women with polycystic ovary syndrome (PCOS): A pilot study. PLoS ONE, 12, e0168390.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lizneva, D., Suturina, L., Walker, W., Brakta, S., Gavrilova-Jordan, L., & Azziz, R. (2016). Criteria, prevalence, and phenotypes of polycystic ovary syndrome. Fertility and Sterility, 106, 6–15.

    Article  PubMed  Google Scholar 

  • Naderpoor, N., Shorakae, S., de Courten, B., Misso, M. L., Moran, L. J., & Teede, H. J. (2015). Metformin and lifestyle modification in polycystic ovary syndrome: Systematic review and meta-analysis. Human Reproduction Update, 21, 560–574.

    Article  CAS  PubMed  Google Scholar 

  • Palomba, S., de Wilde, M. A., Falbo, A., Koster, M. P., La Sala, G. B., & Fauser, B. C. (2015). Pregnancy complications in women with polycystic ovary syndrome. Human Reproduction Update, 21, 575–592.

    Article  PubMed  Google Scholar 

  • Pichette, J., Fynn-Sackey, N., & Gagnon, J. (2017). Hydrogen sulfide and sulfate prebiotic stimulates the secretion of GLP-1 and improves glycemia in male mice. Endocrinology, 158, 3416–3425.

    Article  CAS  PubMed  Google Scholar 

  • Piparva, K. G., & Buch, J. G. (2011). Deep vein thrombosis in a woman taking oral combined contraceptive pills. Journal of Pharmacology & Pharmacotherapeutics, 2, 185–186.

    Article  Google Scholar 

  • Qi, X., Yun, C., Sun, L., Xia, J., Wu, Q., Wang, Y., Wang, L., Zhang, Y., Liang, X., Wang, L., et al. (2019). Gut microbiota–bile acid–interleukin-22 axis orchestrates polycystic ovary syndrome. Nature Medicine, 25, 1225–1233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richards, J. S., Ren, Y. A., Candelaria, N., Adams, J. E., & Rajkovic, A. (2018). Ovarian follicular theca cell recruitment, differentiation, and impact on fertility: 2017 update. Endocrine Reviews, 39, 1–20.

    Article  PubMed  Google Scholar 

  • Rosenfield, R. L., & Ehrmann, D. A. (2016). The pathogenesis of polycystic ovary syndrome (PCOS): The hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocrine Reviews, 37, 467–520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki, H., Kawamura, K., Kawamura, T., Odamaki, T., Katsumata, N., Xiao, J. Z., Suzuki, N., & Tanaka, M. (2019). Distinctive subpopulations of the intestinal microbiota are present in women with unexplained chronic anovulation. Reproductive Biomedicine Online, 38, 570–578.

    Article  PubMed  Google Scholar 

  • Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., & Huttenhower, C. (2011). Metagenomic biomarker discovery and explanation. Genome Biology, 12, R60.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shao, J., Liu, Y., Wang, H., Luo, Y., & Chen, L. (2020). An integrated fecal microbiome and metabolomics in T2DM rats reveal antidiabetes effects from host-microbial metabolic axis of EtOAc extract from Sophora flavescens. Oxidative Medicine and Cellular Longevity, 2020, 1805418.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen, L. Y., Chang, X. F., Pan, L., Liu, X. J., Yang, Z. F., & Hu, H. (2021). Effect of electroacupuncture on expression of Kisspeptin protein in hypothalamus of rats with polycystic ovary syndrome. Acupuncture Research, 46, 106–110. https://doi.org/10.13702/j.1000-0607.200497

    Article  CAS  PubMed  Google Scholar 

  • Snider, A. P., & Wood, J. R. (2019). Obesity induces ovarian inflammation and reduces oocyte quality. Reproduction, 158, R79–R90.

    Article  CAS  PubMed  Google Scholar 

  • Teede, H. J., Misso, M. L., Costello, M. F., Dokras, A., Laven, J., Moran, L., Piltonen, T., Norman, R. J., Andersen, M., Azziz, R., et al. (2018). Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Fertility and Sterility, 110, 364–379.

    Article  PubMed  PubMed Central  Google Scholar 

  • Torres, P. J., Skarra, D. V., Ho, B. S., Sau, L., Anvar, A. R., Kelley, S. T., & Thackray, V. G. (2019). Letrozole treatment of adult female mice results in a similar reproductive phenotype but distinct changes in metabolism and the gut microbiome compared to pubertal mice. BMC Microbiology, 19, 57.

    Article  PubMed  PubMed Central  Google Scholar 

  • Toscano, M., De Grandi, R., Stronati, L., De Vecchi, E., & Drago, L. (2017). Effect of Lactobacillus rhamnosus HN001 and Bifidobacterium longum BB536 on the healthy gut microbiota composition at phyla and species level: A preliminary study. World Journal of Gastroenterology, 23, 2696–2704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tremellen, K., & Pearce, K. (2012). Dysbiosis of gut microbiota (DOGMA)–a novel theory for the development of polycystic ovarian syndrome. Medical Hypotheses, 79, 104–112.

    Article  PubMed  Google Scholar 

  • Tzotzas, T., Karras, S. N., & Katsiki, N. (2017). Glucagon-like peptide-1 (GLP-1) receptor agonists in the treatment of obese women with polycystic ovary syndrome. Current Vascular Pharmacology, 15, 218–229.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., Wang, X., Zhu, Y., Chen, F., Sun, Y., & Han, X. (2015). Increased androgen levels in rats impair glucose-stimulated insulin secretion through disruption of pancreatic beta cell mitochondrial function. The Journal of Steroid Biochemistry and Molecular Biology, 154, 254–266.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., Wu, D., Guo, H., & Li, M. (2019). Hyperandrogenemia and insulin resistance: The chief culprit of polycystic ovary syndrome. Life Sciences, 236, 116940.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Z., Zhu, H., Jiang, Q., & Zhu, Y. Z. (2021). The gut microbiome as non-invasive biomarkers for identifying overweight people at risk for osteoarthritis. Microbial Pathogenesis, 157, 104976.

    Article  CAS  PubMed  Google Scholar 

  • Wolf, W. M., Wattick, R. A., Kinkade, O. N., & Olfert, M. D. (2018). Geographical prevalence of polycystic ovary syndrome as determined by region and race/ethnicity. International Journal of Environmental Research and Public Health, 15, 2589.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu, Q., Gao, J., Bai, D., Yang, Z., & Liao, Q. (2021). The prevalence of polycystic ovarian syndrome in Chinese women: A meta-analysis. Annals of Palliative Medicine, 10, 74–87.

    Article  PubMed  Google Scholar 

  • Yang, T., Santisteban, M. M., Rodriguez, V., Li, E., Ahmari, N., Carvajal, J. M., Zadeh, M., Gong, M., Qi, Y., Zubcevic, J., Sahay, B., et al. (2015). Gut dysbiosis is linked to hypertension. Hypertension, 65, 1331–1340.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Y. L., Zhou, W. W., Wu, S., Tang, W. L., Wang, Z. W., Zhou, Z. Y., Li, Z. W., Huang, Q. F., He, Y., & Zhou, H. W. (2021). Intestinal flora is a key factor in insulin resistance and contributes to the development of polycystic ovary syndrome. Endocrinology, 162, bqab118.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu, Y., Cao, Y., Huang, W., Liu, Y., Lu, Y., & Zhao, J. (2021). β-Sitosterol ameliorates endometrium receptivity in PCOS-like mice: The mediation of gut microbiota. Frontiers in Nutrition, 8, 667130.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao, X., Jiang, Y., Xi, H., Chen, L., & Feng, X. (2020). Exploration of the relationship between gut microbiota and polycystic ovary syndrome (PCOS): A review. Geburtshilfe Und Frauenheilkunde, 80, 161–171.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou, L., Ni, Z., Cheng, W., Yu, J., Sun, S., Zhai, D., Yu, C., & Cai, Z. (2020). Characteristic gut microbiota and predicted metabolic functions in women with PCOS. Endocrine Connections, 9, 63–73.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Advantages Discipline Group (Biology and Medicine) Project in Higher Education of Hubei Province (2021–2025) (2022BMXKQY4), Cultivating Project for Young Scholar at Hubei University of Medicine (2016QDJZR17), National Undergraduate Training Program for Innovation and Entrepreneurship (S202210929003, S202210929005, S202110929010, 202013249003), the Scientific and Technological Project of Shiyan City of Hubei Province (No. 22Y26), and Scientific research Project of Hubei Provincial Health Commission (WJ2023M169).

Author information

Authors and Affiliations

Authors

Contributions

WJJ, ZJ, QXM and FL conceptualized and designed the research; WJJ, ZJ, QXM, MSH, CXJ, CZY and WRZ conducted the research; WJJ, ZJ, JYF, TY and FL interpreted and analyzed the results; WJJ and ZJ wrote the original draft of the paper; WJJ and QXM acquired funding.

Corresponding authors

Correspondence to Li Fan or Jingjie Wang.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflicts of interest.

Ethical Approval

The study for clinical samples and animal study was reviewed and approved by the Human Ethics Committee and the Experimental Animal Ethics Committee of the Hubei University of Medicine under permit numbers HBMU2020-S-H072 and HBMU2021-S109.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 266 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Qiu, X., Chen, X. et al. Comprehensive Analysis of Gut Microbiota Alteration in the Patients and Animal Models with Polycystic Ovary Syndrome. J Microbiol. 61, 821–836 (2023). https://doi.org/10.1007/s12275-023-00079-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-023-00079-9

Keywords

Navigation