Skip to main content
Log in

Andrographolide anti-proliferation and metastasis of hepatocellular carcinoma through LncRNA MIR22HG regulation

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma (HCC) treatment is a major challenge. Although andrographolide (Andro) has an anti-proliferation effect on HCC, its underlying mechanism is not yet elucidated, and whether Andro can inhibit HCC metastasis has not been reported. The present study aimed to clarify whether Andro inhibits SK-Hep-1 cell proliferation and HCC metastasis, and the mechanisms. The results showed that Andro significantly reduced the survival of HCC cells and tumor weight and volume in tumor-bearing nude mice. Andro also triggered apoptosis of HCC cells and upregulated MIR22HG, Cleaved Caspase 9/7/3 expression levels, and downregulated BCL-2 mRNA, BCL-2 expression levels. Knockdown of MIR22HG or overexpression of HuR attenuated the effects of Andro on the signal transduction of mitochondrial apoptotic pathway and proliferation ability in HCC cells. Moreover, Andro significantly reduced the invasive ability of the cells and the level of HCC cell lung metastasis, upregulated miR-22-3p expression level and downregulated HMGB1 and MMP-9 expression levels. MIR22HG or miR-22-3p knockdown attenuated the effects of Andro on the signaling of HMGB1/MMP-9 pathway and invasive ability in HCC cells, while the overexpression of HMGB1 attenuated the inhibitory effects of Andro on the MMP-9 expression level and invasive ability in HCC cells. Thus, the regulation of MIR22HG-HuR/BCL-2 and MIR22HG/HMGB1 signaling pathways is involved in the anti-HCC proliferation and metastasis effects of Andro. This study provided a new pharmacological basis for Andro in HCC treatment and, for the first time, identified a natural product molecule capable of positively regulating MIR22HG, which has a robust biological function.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

Andro:

Andrographolide

HCC:

Hepatocellular carcinoma

CCK-8:

Cell counting kit-8

LDH:

Lactate dehydrogenase

EdU:

5-Ethynyl-20-deoxyuridine

PI:

Propidium iodide

TUNEL:

Terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling

MMP:

Matrix metalloproteinase

JC-1:

5,5′,6,6′-Tetrachloro-1,1′,3,3′-tetraethylbenzimidazolylcarbocyanine iodide

LncRNAs:

Long non-coding RNAs

BCL-2:

B-cell leukemia/lymphoma 2

MIR22HG:

Human miR-22 host gene

HuR:

Human antigen R

ALT:

Glutamic-pyruvic transaminase

AST:

Glutamic oxaloacetic transaminase

HMGB1:

High-mobility group protein B1

BUN:

Blood urea nitrogen

CREA:

Creatinine

Cyt C:

Cytochrome C

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65(2):87–108

    Article  PubMed  Google Scholar 

  2. Sartorius K, Sartorius B, Aldous C, Govender PS, Madiba TE (2015) Global and country underestimation of hepatocellular carcinoma (HCC) in 2012 and its implications. Cancer Epidemiol 39(3):284–290

    Article  PubMed  CAS  Google Scholar 

  3. de Lope CR, Tremosini S, Forner A, Reig M, Bruix J (2012) Management of HCC. J Hepatol 56(Suppl 1):S75-87

    Article  PubMed  Google Scholar 

  4. Aino H, Sumie S, Niizeki T, Kuromatsu R, Tajiri N, Nakano M, Satani M, Yamada S, Okamura S, Shimose S, Sumie H, Torimura T, Sata M (2014) Clinical characteristics and prognostic factors for advanced hepatocellular carcinoma with extrahepatic metastasis. Mol Clin Oncol 2(3):393–398

    Article  PubMed  PubMed Central  Google Scholar 

  5. Natsuizaka M, Omura T, Akaike T, Kuwata Y, Yamazaki K, Sato T, Karino Y, Toyota J, Suga T, Asaka M (2005) Clinical features of hepatocellular carcinoma with extrahepatic metastases. J Gastroenterol Hepatol 20(11):1781–1787

    Article  PubMed  Google Scholar 

  6. Kopp F, Mendell JT (2018) Functional classification and experimental dissection of long noncoding RNAs. Cell 172(3):393–407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Beermann J, Piccoli MT, Viereck J, Thum T (2016) Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol Rev 96(4):1297–1325

    Article  PubMed  CAS  Google Scholar 

  8. Lavorgna G, Vago R, Sarmini M, Montorsi F, Salonia A, Bellone M (2016) Long non-coding RNAs as novel therapeutic targets in cancer. Pharmacol Res 110:131–138

    Article  PubMed  CAS  Google Scholar 

  9. Takahashi K, Yan I, Haga H, Patel T (2014) Long noncoding RNA in liver diseases. Hepatology 60(2):744–753

    Article  PubMed  CAS  Google Scholar 

  10. Zheng J, Xiong D, Sun X, Wang J, Hao M, Ding T, Xiao G, Wang X, Mao Y, Fu Y, Shen K, Wang J (2012) Signification of hypermethylated in cancer 1 (HIC1) as tumor suppressor gene in tumor progression. Cancer Microenviron 5(3):285–293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Zhao X, He M, Wan D, Ye Y, He Y, Han L, Guo M, Huang Y, Qin W, Wang MW, Chong W, Chen J, Zhang L, Yang N, Xu B, Wu M, Zuo L, Gu J (2003) The minimum LOH region defined on chromosome 17p13.3 in human hepatocellular carcinoma with gene content analysis. Cancer Lett 190(2):221–232

  12. Zhang DY, Zou XJ, Cao CH, Zhang T, Lei L, Qi XL, Liu L, Wu DH (2018) Identification and functional characterization of long non-coding RNA MIR22HG as a tumor suppressor for hepatocellular carcinoma. Theranostics 8(14):3751–3765

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Liu PL, Tsai JR, Hwang JJ, Chou SH, Cheng YJ, Lin FY, Chen YL, Hung CY, Chen WC, Chen YH, Chong IW (2010) High-mobility group box 1-mediated matrix metalloproteinase-9 expression in non-small cell lung cancer contributes to tumor cell invasiveness. Am J Respir Cell Mol Biol 43(5):530–538

    Article  PubMed  CAS  Google Scholar 

  14. Wu Y, Zhou Y, Huan L, Xu L, Shen M, Huang S, Liang L (2019) LncRNA MIR22HG inhibits growth, migration and invasion through regulating the miR-10a-5p/NCOR2 axis in hepatocellular carcinoma cells. Cancer Sci 110(3):973–984

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Shi L, Zhang G, Zheng Z, Lu B, Ji L (2017) Andrographolide reduced VEGFA expression in hepatoma cancer cells by inactivating HIF-1α: the involvement of JNK and MTA1/HDCA. Chem Biol Interact 273:228–236

    Article  PubMed  CAS  Google Scholar 

  16. Ji L, Shen K, Jiang P, Morahan G, Wang Z (2011) Critical roles of cellular glutathione homeostasis and jnk activation in andrographolide-mediated apoptotic cell death in human hepatoma cells. Mol Carcinog 50(8):580–591

    Article  PubMed  CAS  Google Scholar 

  17. Pearngam P, Kumkate S, Okada S, Janvilisri T (2019) Andrographolide inhibits cholangiocarcinoma cell migration by down-regulation of claudin-1 via the p-38 signaling pathway. Front Pharmacol 10:827

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Dai L, Wang G, Pan W (2017) Andrographolide inhibits proliferation and metastasis of SGC7901 gastric cancer cells. Biomed Res Int 2017:6242103

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dai Y, Chen SR, Chai L, Zhao J, Wang Y, Wang Y (2019) Overview of pharmacological activities of Andrographis paniculata and its major compound andrographolide. Crit Rev Food Sci Nutr 59(sup1):S17-s29

    Article  PubMed  CAS  Google Scholar 

  20. Zhang L, Bao M, Liu B, Zhao H, Zhang Y, Ji X, Zhao N, Zhang C, He X, Yi J, Tan Y, Li L, Lu C (2020) Effect of andrographolide and its analogs on bacterial infection: a review. Pharmacology 105(3–4):123–134

    Article  PubMed  CAS  Google Scholar 

  21. Qu J, Liu Q, You G, Ye L, Jin Y, Kong L, Guo W, Xu Q, Sun Y (2022) Advances in ameliorating inflammatory diseases and cancers by andrographolide: pharmacokinetics, pharmacodynamics, and perspective. Med Res Rev 42(3):1147–1178

    Article  PubMed  CAS  Google Scholar 

  22. Chua LS (2014) Review on liver inflammation and antiinflammatory activity of Andrographis paniculata for hepatoprotection. Phytother Res 28(11):1589–1598

    Article  PubMed  Google Scholar 

  23. Zhou J, Zhang S, Ong CN, Shen HM (2006) Critical role of pro-apoptotic Bcl-2 family members in andrographolide-induced apoptosis in human cancer cells. Biochem Pharmacol 72(2):132–144

    Article  PubMed  CAS  Google Scholar 

  24. Xu J, Shao T, Song M, Xie Y, Zhou J, Yin J, Ding N, Zou H, Li Y, Zhang J (2020) MIR22HG acts as a tumor suppressor via TGFβ/SMAD signaling and facilitates immunotherapy in colorectal cancer. Mol Cancer 19(1):51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Cui Z, An X, Li J, Liu Q, Liu W (2018) LncRNA MIR22HG negatively regulates miR-141-3p to enhance DAPK1 expression and inhibits endometrial carcinoma cells proliferation. Biomed Pharmacother 104:223–228

    Article  PubMed  CAS  Google Scholar 

  26. Su W, Feng S, Chen X, Yang X, Mao R, Guo C, Wang Z, Thomas DG, Lin J, Reddy RM, Orringer MB, Chang AC, Yang Z, Beer DG, Chen G (2018) Silencing of long noncoding RNA MIR22HG triggers cell survival/death signaling via oncogenes YBX1, MET, and p21 in lung cancer. Cancer Res 78(12):3207–3219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Deng X, Ye D, Hua K, Song H, Luo Q, Munankarmy A, Liu D, Zhou B, Zheng W, Zhou X, Ji C, Wang X, Yu Y, Fang L (2021) MIR22HG inhibits breast cancer progression by stabilizing LATS2 tumor suppressor. Cell Death Dis 12(9):810

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Abdelmohsen K, Gorospe M (2010) Posttranscriptional regulation of cancer traits by HuR. Wiley Interdiscip Rev RNA 1(2):214–229

    Article  PubMed  CAS  Google Scholar 

  29. Kim J, Abdelmohsen K, Yang X, De S, Grammatikakis I, Noh JH, Gorospe M (2016) LncRNA OIP5-AS1/cyrano sponges RNA-binding protein HuR. Nucleic Acids Res 44(5):2378–2392

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Abdelmohsen K, Lal A, Kim HH, Gorospe M (2007) Posttranscriptional orchestration of an anti-apoptotic program by HuR. Cell Cycle 6(11):1288–1292

    Article  PubMed  CAS  Google Scholar 

  31. Ishimaru D, Ramalingam S, Sengupta TK, Bandyopadhyay S, Dellis S, Tholanikunnel BG, Fernandes DJ, Spicer EK (2009) Regulation of Bcl-2 expression by HuR in HL60 leukemia cells and A431 carcinoma cells. Mol Cancer Res 7(8):1354–1366

    Article  PubMed  CAS  Google Scholar 

  32. Ayupova DA, Singh M, Leonard EC, Basile DP, Lee BS (2009) Expression of the RNA-stabilizing protein HuR in ischemia-reperfusion injury of rat kidney. Am J Physiol Renal Physiol 297(1):F95-f105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305(5684):626–629

    Article  PubMed  CAS  Google Scholar 

  34. Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116(2):205–219

    Article  PubMed  CAS  Google Scholar 

  35. Slee EA, Adrain C, Martin SJ (1999) Serial killers: ordering caspase activation events in apoptosis. Cell Death Differ 6(11):1067–1074

    Article  PubMed  CAS  Google Scholar 

  36. Kuribayashi K, Mayes PA, El-Deiry WS (2006) What are caspases 3 and 7 doing upstream of the mitochondria? Cancer Biol Ther 5(7):763–765

    Article  PubMed  CAS  Google Scholar 

  37. França GS, Vibranovski MD, Galante PA (2016) Host gene constraints and genomic context impact the expression and evolution of human microRNAs. Nat Commun 7:11438

    Article  PubMed  PubMed Central  Google Scholar 

  38. Patel JB, Appaiah HN, Burnett RM, Bhat-Nakshatri P, Wang G, Mehta R, Badve S, Thomson MJ, Hammond S, Steeg P, Liu Y, Nakshatri H (2011) Control of EVI-1 oncogene expression in metastatic breast cancer cells through microRNA miR-22. Oncogene 30(11):1290–1301

    Article  PubMed  CAS  Google Scholar 

  39. Wang J, Xiang G, Zhang K, Zhou Y (2012) Expression signatures of intragenic miRNAs and their corresponding host genes in myeloid leukemia cells. Biotechnol Lett 34(11):2007–2015

    Article  PubMed  CAS  Google Scholar 

  40. Ellerman JE, Brown CK, de Vera M, Zeh HJ, Billiar T, Rubartelli A, Lotze MT (2007) Masquerader: high mobility group box-1 and cancer. Clin Cancer Res 13(10):2836–2848

    Article  PubMed  CAS  Google Scholar 

  41. Tang D, Kang R, Zeh HJ 3rd, Lotze MT (2010) High-mobility group box 1 and cancer. Biochim Biophys Acta 1799(1–2):131–140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This study was supported by National Natural Science Foundation of China (No. 82260793); China Postdoctoral Science Foundation funded project (No. 2020M680834); Jiangxi Provincial Natural Science Foundation (No. 20212BAB216002); The Key R & D Project of Ganzhou Science and Technology Plan Project (2022B-SF8897); The Start-up Fund of Gannan Medical University (No. QD201821); The Science and Technology Project of the Education Department of Jiangxi Province (No. GJJ211517).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: YJ, YL. Performed the experiments: YL, JH, YJ. Analyzed the data: JH, DM, YS, WY. Contributed reagents/materials/analysis tools: YJ, YL. Wrote and revised the paper: YJ, YL.

Corresponding authors

Correspondence to Yi Li or Yumao Jiang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Order of corresponding authors was incorrect and corrected in this version.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3313 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Hu, J., Jiao, Y. et al. Andrographolide anti-proliferation and metastasis of hepatocellular carcinoma through LncRNA MIR22HG regulation. J Nat Med 78, 123–145 (2024). https://doi.org/10.1007/s11418-023-01752-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-023-01752-4

Keywords

Navigation