Skip to main content
Log in

From Coupling Second-Order Stresses to Understanding and Predicting the Structural Response of a Dioctahedral Smectite

  • Original Paper
  • Published:
Clays and Clay Minerals

Abstract

The employment of clay minerals in the transport of water, nutrients, and contaminants depends on a few factors, including permeability, hydration behavior, ion-exchange efficiency, and more. With the application of external stress, it is still difficult to understand how clay particles swell and collapse, how water is retained, how hydration heterogeneities are formed within crystallites, and how interlamellar space is organized. The present work studied the link between geochemical, thermal, kinetic constraints (established at the laboratory scale), and intrinsic clay features by exchanging Na-rich montmorillonite (SWy2) with Ni2+, Mg2+, or Zn2+ cations. By comparing the experimental 00l reflections with the calculated reflections obtained from the structural models, quantitative X-ray diffraction (XRD) analysis has enabled the building of a theoretical profile describing the layer stacking mode (LSM) and allowed the description of interlayer space (IS) configuration along the c* axis. Regardless of the type of the exchangeable cations (EC), XRD modeling revealed that all samples exhibited interstratified hydration behavior within the crystallite size, which probably indicates partial or incomplete saturation of the IS. This theoretical result was defined by the appearance of two hydration states (1W and 2W), which were unrelated to the strain strength creating a higher degree of structural heterogeneity. Using the theoretical decomposition of the observed XRD patterns, the identification of all distinct layer populations and their stacking mode was achieved. The segregated LSM are, therefore, obviously superior as a function of stress strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The generated and analyzed data during the current study are included within the article and can be obtained from the corresponding authors upon reasonable request.

References

  • Abadie, P.M. (2020). La gestion des déchets radioactifs en France et dans le monde. In Annales des Mines-Responsabilite et environnement,https://doi.org/10.3917/re1.097.0048

  • Ahmed, H. A., Soliman, M. S., & Othman, S. A. (2021). Synthesis and characterization of magnetic nickel ferrite-modified montmorillonite nanocomposite for Cu (II) and Zn (II) ions removal from wastewater. Egyptian Journal of Chemistry, 64, 5627–5645. https://doi.org/10.21608/ejchem.2021.69597.3527

    Article  Google Scholar 

  • Alshabanat, M., Al-Arrash, A., & Mekhamer, W. (2013). Polystyrene/montmorillonite nanocomposites: Study of the morphology and effects of sonication time on thermal stability. Journal of Nanomaterials, 2013, 650725. https://doi.org/10.1155/2013/650725

    Article  Google Scholar 

  • Altin, O., Ozbelge, O. H., & Dogu, T. (1999). Effect of pH, flow rate and concentration on the sorption of Pb and Cd on montmorillonite: I. Experimental. Journal of Chemical Technology & Biotechnology, 74(12), 1131–1138. https://doi.org/10.1002/(SICI)1097-4660(199912)74:12%3c1131::AID-JCTB158%3e3.0.CO;2-0

    Article  Google Scholar 

  • Altin, O., Ozbelge, O. H., & Dogu, T. (1999). Effect of pH, flow rate and concentration on the sorption of Pb and Cd on montmorillonite: II. Modelling. Journal of Chemical Technology & Biotechnology, 74(12), 1139–1144. https://doi.org/10.1002/(SICI)1097-4660(199912)74:12%3c1139::AID-JCTB159%3e3.0.CO;2-Q

    Article  Google Scholar 

  • Amara, A. B. H. (1997). X-ray diffraction, infrared and TGA/DTG analysis of hydrated nacrite. Clay Minerals, 32(3), 463–470. https://doi.org/10.1180/claymin.1997.032.3.08

    Article  Google Scholar 

  • Ammar, M., Oueslati, W., & Ben Haj Amara, A. (2018). Mg-Exchanged Montmorillonite Undergoing External Environmental Solicitation: Crystalline Swelling Process Investigation. In Conference of the Arabian Journal of Geosciences,https://doi.org/10.1007/978-3-030-01575-6_44

  • Ammar, M., Oueslati, W., Ben Rhaiem, H., & Ben Haj Amara, A. (2014c). Quantitative XRD analysis of the dehydration–hydration performance of (Na+, Cs+) exchanged smectite. Desalination and Water Treatment, 52(22–24), 4314–33. https://doi.org/10.1080/19443994.2013.803324

    Article  Google Scholar 

  • Ammar, M., Oueslati, W., Chorfi, N., & Rhaiem, H. B. (2014a). Interlamellar space configuration under variable environmental conditions in the case of Ni-exchanged montmorillonite: Quantitative XRD analysis. Journal of Nanomaterials, 2014, 284612. https://doi.org/10.1155/2014/284612

    Article  Google Scholar 

  • Ammar, M., Oueslati, W., Rhaiem, H. B., & Amara, A. B. H. (2014b). Effect of the hydration sequence orientation on the structural properties of Hg exchanged montmorillonite: Quantitative XRD analysis. Journal of Environmental Chemical Engineering, 2(3), 1604–1611. https://doi.org/10.1016/j.jece.2014.05.022

    Article  Google Scholar 

  • Anastácio, A. S., Aouad, A., Sellin, P., Fabris, J. D., Bergaya, F., & Stucki, J. W. (2008). Characterization of a redox-modified clay mineral with respect to its suitability as a barrier in radioactive waste confinement. Applied Clay Science, 39(3–4), 172–179. https://doi.org/10.1016/j.clay.2007.05.007

    Article  Google Scholar 

  • Antoine, P., Marchiol, A., Brocandel, M., & Gros, Y. (2005). Découverte de structures périglaciaires (sand-wedges et composite-wedges) sur le site de stockage de déchets radioactifs de l‘Aube (France). Comptes Rendus Geoscience, 337(16), 1462–1473. https://doi.org/10.1016/j.crte.2005.08.008

    Article  Google Scholar 

  • Babel, S., & Kurniawan, T. A. (2003). Low-cost adsorbents for heavy metals uptake from contaminated water: A review. Journal of Hazardous Materials, 97(1–3), 219–243. https://doi.org/10.1016/S0304-3894(02)00263-7

    Article  Google Scholar 

  • Bailey, S.W. (1980). Structures of layer silicates. In: Crystal Structures of Clay Minerals and their X-Ray Identification (Ed.), Mineralogical Society of Great Britain and Ireland.

  • Bataillon, C., Musy, C., & Roy, M. (2001). Corrosion des surconteneurs de déchets, cas d‘un surconteneur en acier faiblement allié. Le Journal De Physique IV, 11,. https://doi.org/10.1051/jp4:2001127

    Article  Google Scholar 

  • Ben Brahim, J., Besson, G., & Tchoubar, C. (1984). Etude des profils des bandes de diffraction X d‘une beidellite-Na hydratée à deux couches d‘eau. Détermination du mode d‘empilement des feuillets et des sites occupés par l‘eau. Journal of Applied Crystallography, 17(9), 179–188. https://doi.org/10.1107/S0021889884011262

  • Berend, I. (1991). Les mécanismes d‘hydratation de montmorillonites homoioniques pour des pressions relatives inferieures à 0.95 (Doctoral dissertation, Institut National Polytechnique de Lorraine).

  • Bérend, I., Cases, J. M., François, M., Uriot, J. P., Michot, L., Masion, A., & Thomas, F. (1995). Mechanism of adsorption and desorption of water vapor by homoionic montmorillonites: 2. The Li+ Na+, K+, Rb+ and Cs+-exchanged forms. Clays and Clay Minerals, 43(3), 324–336. https://doi.org/10.1346/CCMN.1995.0430307

    Article  Google Scholar 

  • Bergaya, F.B.K.G., & Lagaly, G. (2013). General introduction: clays, clay minerals, and clay science. In Developments in clay science (Ed.), Handbook of Clay Science (pp. 1–19). Elsevier.

  • Bobin, J.L., Huffer, E., & Nifenecker, H. (2021). 20-LE STOCKAGE DES DÉCHETS NUCLÉAIRES EN SITE PROFOND. In L’énergie de demain (Ed.), (pp. 429–448). EDP Sciences.

  • Brown, G. (1982). Crystal Structures of Clay Minerals and their X-ray identification. The Mineralogical Society of Great Britain and Ireland.

  • Carretero, M. I., & Pozo, M. (2009). Clay and non-clay minerals in the pharmaceutical industry: Part I. Excipients and medical applications. Applied Clay Science, 46(1), 73–80. https://doi.org/10.1016/j.clay.2009.07.017

    Article  Google Scholar 

  • Carretero, M. I., & Pozo, M. (2010). Clay and non-clay minerals in the pharmaceutical and cosmetic industries Part II Active ingredients. Applied Clay Science, 47(3–4), 171–181. https://doi.org/10.1016/j.clay.2009.10.016

    Article  Google Scholar 

  • Cases, J. M., Bérend, I., François, M., Uriot, L. P., Michot, L. J., & Thomas, F. (1997). Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite: 3. The Mg2+, Ca2+, Sr2+ and Ba2+ exchanged forms. Clays and Clay Minerals, 45, 8–22. https://doi.org/10.1346/CCMN.1997.0450102

    Article  Google Scholar 

  • Chaari, I., Medhioub, M., & Jamoussi, F. (2011). Use of clay to remove heavy metals from Jebel Chakir landfill leachate. Journal of Applied Sciences in Environmental Sanitation, 6(2), 143–148.

    Google Scholar 

  • Chalghaf, R., Oueslati, W., Ammar, M., Rhaiem, H. B., & Amara, A. B. H. (2012). Effect of an “in situ” hydrous strain on the ionic exchange process of dioctahedral smectite: Case of solution containing (Cu2+, Co2+) cations. Applied Surface Science, 258(22), 9032–9040. https://doi.org/10.1016/j.apsusc.2012.05.144

    Article  Google Scholar 

  • Chalghaf, R., Oueslati, W., Ammar, M., Rhaiem, H. B., & Amara, A. B. H. (2013). Effect of temperature and pH value on cation exchange performance of a natural clay for selective (Cu2+, Co2+) removal: Equilibrium, sorption and kinetics. Progress in Natural Science: Materials International, 23(1), 23–35. https://doi.org/10.1016/j.pnsc.2013.01.004

    Article  Google Scholar 

  • Coles, C. A., & Yong, R. N. (2002). Aspects of kaolinite characterization and retention of Pb and Cd. Applied Clay Science, 22(1–2), 39–45. https://doi.org/10.1016/S0169-1317(02)00110-2

    Article  Google Scholar 

  • Cui, J., Zhang, Z., & Han, F. (2020). Effects of pH on the gel properties of montmorillonite, palygorskite and montmorillonite-palygorskite composite clay. Applied Clay Science, 190, 105543. https://doi.org/10.1016/j.clay.2020.105543

    Article  Google Scholar 

  • Dazas, B., Ferrage, E., Delville, A., & Lanson, B. (2014). Interlayer structure model of tri-hydrated low-charge smectite by X-ray diffraction and Monte Carlo modeling in the Grand Canonical ensemble. American Mineralogist, 99, 1724–1735. https://doi.org/10.2138/am.2014.4846

    Article  Google Scholar 

  • Dazas, B., Lanson, B., Delville, A., Robert, J. L., Komarneni, S., Michot, L. J., & Ferrage, E. (2015). Influence of tetrahedral layer charge on the organization of interlayer water and ions in synthetic Na-saturated smectites. The Journal of Physical Chemistry C, 119(8), 4158–4172. https://doi.org/10.1021/jp5123322

    Article  Google Scholar 

  • De Queiroga, L. N. F., Franca, D. B., Rodrigues, F., Santos, I. M., Fonseca, M. G., & Jaber, M. (2019). Functionalized bentonites for dye adsorption: Depollution and production of new pigments. Journal of Environmental Chemical Engineering, 7(5), 103333. https://doi.org/10.1016/j.jece.2019.103333

    Article  Google Scholar 

  • Dizier, A. (2011). Caractérisation des effets de température dans la zone endommagée autour de tunnels de stockage de déchets nucléaires dans des roches argileuses.

  • Drits, V.A., & Tchoubar, C. (1990). The modelization method in the determination of the structural characteristics of some layer silicates: Internal structure of the layers, nature and distribution of the stacking faults. In X-ray Diffraction by Disordered Lamellar Structures (pp. 233–303). Springer, Berlin, Heidelberg.

  • Es-Sahbany, H., Berradi, M., Nkhili, S., Hsissou, R., Allaoui, M., Loutfi, M., & El Youbi, M. S. (2019). Removal of heavy metals (nickel) contained in wastewater-models by the adsorption technique on natural clay. Materials Today: Proceedings, 13, 866–875. https://doi.org/10.1016/j.matpr.2019.04.050

    Article  Google Scholar 

  • Ferrage, E. (2016). Investigation of the interlayer organization of water and ions in smectite from the combined use of diffraction experiments and molecular simulations. A review of methodology, applications, and perspectives. Clays and Clay Minerals, 64(4), 348–373. https://doi.org/10.1346/CCMN.2016.0640401

    Article  Google Scholar 

  • Ferrage, E., Kirk, C. A., Cressey, G., & Cuadros, J. (2007). Dehydration of Ca-montmorillonite at the crystal scale Part I: Structure evolution. American Mineralogist, 92(7), 994–1006. https://doi.org/10.2138/am.2007.2396

    Article  Google Scholar 

  • Ferrage, E., Kirk, C. A., Cressey, G., & Cuadros, J. (2007). Dehydration of Ca-montmorillonite at the crystal scale. Part 2. Mechanisms and kinetics. American Mineralogist, 92(7), 1007–1017. https://doi.org/10.2138/am.2007.2397

    Article  Google Scholar 

  • Ferrage, E., Lanson, B., Malikova, N., Plançon, A., Sakharov, B. A., & Drits, V. A. (2005b). New insights on the distribution of interlayer water in bi-hydrated smectite from X-ray diffraction profile modeling of 00l reflections. Chemistry of Materials, 17(13), 3499–3512. https://doi.org/10.1021/cm047995v

    Article  Google Scholar 

  • Ferrage, E., Lanson, B., Michot, L. J., & Robert, J. L. (2010). Hydration properties and interlayer organization of water and ions in synthetic Na-smectite with tetrahedral layer charge. Part 1. Results from X-ray diffraction profile modeling. The Journal of Physical Chemistry C, 114(10), 4515–4526. https://doi.org/10.1021/jp909860p

    Article  Google Scholar 

  • Ferrage, E., Lanson, B., Sakharov, B. A., & Drits, V. A. (2005). Investigation of smectite hydration properties by modeling experimental X-ray diffraction patterns: Part I. Montmorillonite hydration properties. American Mineralogist, 90(8–9), 1358–1374. https://doi.org/10.2138/am.2005.1776

    Article  Google Scholar 

  • Gomes, C. D. S. F., & Silva, J. B. P. (2007). Minerals and clay minerals in medical geology. Applied Clay Science, 36(1–3), 4–21. https://doi.org/10.1016/j.clay.2006.08.006

    Article  Google Scholar 

  • Gregoire, B., Dazas, B., Leloup, M., Hubert, F., Tertre, E., Ferrage, E., & Petit, S. (2020). Optical theory-based simulation of attenuated total reflection infrared spectra of montmorillonite films. Clays and Clay Minerals, 68, 175–187. https://doi.org/10.1007/s42860-020-00073-x

    Article  Google Scholar 

  • Gubitosa, J., Rizzi, V., Fini, P., & Cosma, P. (2019). Hair care cosmetics: From traditional shampoo to solid clay and herbal shampoo, a review. Cosmetics, 6, 1–13. https://doi.org/10.3390/cosmetics6010013

    Article  Google Scholar 

  • Güven, N., & Bailey, S. W. (1988). Hydrous Phyllosilicates. Reviews in Mineralogy, 19, 497–559.

    Google Scholar 

  • Hu, C., Zhu, P., Cai, M., Hu, H., & Fu, Q. (2017). Comparative adsorption of Pb (II), Cu (II) and Cd (II) on chitosan saturated montmorillonite: Kinetic, thermodynamic and equilibrium studies. Applied Clay Science, 143, 320–326. https://doi.org/10.1016/j.clay.2017.04.005

    Article  Google Scholar 

  • Huber, F. M., Heck, S., Truche, L., Bouby, M., Brendlé, J., Hoess, P., & Schäfer, T. (2015). Radionuclide desorption kinetics on synthetic Zn/Ni-labeled montmorillonite nanoparticles. Geochimica et Cosmochimica Acta, 148, 426–441. https://doi.org/10.1016/j.gca.2014.10.010

    Article  Google Scholar 

  • Hussain, S. T., & Ali, S. A. K. (2021). Removal of heavy metal by ion exchange using bentonite clay. Journal of Ecological Engineering, 22(1), 104–111. https://doi.org/10.12911/22998993/128865

    Article  Google Scholar 

  • Ishidera, T., Okazaki, M., Yamada, Y., Tomura, T., & Shibutani, S. (2022). Sorption of Sn and Nb on montmorillonite at neutral to alkaline pH. Journal of Nuclear Science and Technology, 60(5), 536–546. https://doi.org/10.1080/00223131.2022.2125453

    Article  Google Scholar 

  • Jiang, K., Liu, K., Peng, Q., & Zhou, M. (2021). Adsorption of Pb (II) and Zn (II) ions on humus-like substances modified montmorillonite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 631, 127706. https://doi.org/10.1016/j.colsurfa.2021.127706

    Article  Google Scholar 

  • Karmous, M. S., Ben Rhaiem, H., Naamen, S., Oueslati, W., & Ben Haj Amara, A. (2006). The interlayer structure and thermal behavior of Cu and Ni montmorillonites. Zeitschrift Für Kristallographie Supplement, 23(2006), 431–436.

    Article  Google Scholar 

  • Karmous, M. S., Rhaiem, H. B., Robert, J. L., Lanson, B., & Amara, A. B. H. (2009). Charge location effect on the hydration properties of synthetic saponite and hectorite saturated by Na+, Ca2+ cations: XRD investigation. Applied Clay Science, 46(1), 43–50. https://doi.org/10.1016/j.clay.2009.07.007

    Article  Google Scholar 

  • Komadel, P., Bujdák, J., Madejová, J., Šucha, V., & Elsass, F. (1996). Effect of non-swelling layers on the dissolution of reduced-charge montmorillonite in hydrochloric acid. Clay Minerals, 31(3), 333–345. https://doi.org/10.1180/claymin.1996.031.3.04

    Article  Google Scholar 

  • Kozaki, T., Sawaguchi, T., Fujishima, A., & Sato, S. (2010). Effect of exchangeable cations on apparent diffusion of Ca2+ ions in Na-and Ca-montmorillonite mixtures. Physics and Chemistry of the Earth, Parts A/B/C, 35(6–8), 254–258. https://doi.org/10.1016/j.pce.2010.04.006

    Article  Google Scholar 

  • Kraevsky, S. V., Tournassat, C., Vayer, M., Warmont, F., Grangeon, S., Wakou, B. F. N., & Kalinichev, A. G. (2020). Identification of montmorillonite particle edge orientations by atomic-force microscopy. Applied Clay Science, 186, 105442. https://doi.org/10.1016/j.clay.2020.105442

    Article  Google Scholar 

  • Kretz, R. (1983). Symbols for rock-forming minerals. American Mineralogist.

  • Lahbib, M., Meftah, M., Mejri, C., Oueslati, W., & Amara, A. B. H. (2023). The starting stoichiometry, keys parameter to enhance the intrinsic microstructural and functional properties of synthesized hybrid nanocomposites chitosan/Na-montmorillonite/ZnO nanoparticlest type. Applied Surface Science Advances, 13, 100369. https://doi.org/10.1016/j.apsadv.2023.100369

    Article  Google Scholar 

  • Landrein, P., Vigneron, G., Delay, J., Lebon, P., & Pagel, M. (2013). Lithologie, hydrodynamisme et thermicité dans le système sédimentaire multicouche recoupé par les forages Andra de Montiers-sur-Saulx (Meuse). Bulletin De La Société Géologique De France, 184(6), 519–543. https://doi.org/10.2113/gssgfbull.184.6.519

    Article  Google Scholar 

  • Lanson, B. (2011). Modelling of X-ray diffraction profiles: Investigation of defective lamellar structure crystal chemistry. In Layered Mineral Structures and their Application in Advanced Technologies (Ed.), European Mineralogical Union and the Mineralogical Society of Great Britain and Ireland.

  • Lanson, B. (2005). Crystal structure of mixed-layer minerals and their X-ray identification: New insights from X-ray diffraction profile modeling. Clay Science, 12(Supplement1), 1–5. https://doi.org/10.11362/jcssjclayscience1960.12.Supplement1_1

    Article  Google Scholar 

  • Laverov, N. P., Yudintsev, S. V., Kochkin, B. T., & Malkovsky, V. I. (2016). The Russian strategy of using crystalline rock as a repository for nuclear waste. Elements. https://doi.org/10.2113/gselements.12.4.253

    Article  Google Scholar 

  • Leong, Y. K., Du, M., Au, P. I., Clode, P., & Liu, J. (2018). Microstructure of sodium montmorillonite gels with long aging time scale. Langmuir, 34(33), 9673–9682. https://doi.org/10.1021/acs.langmuir.8b00213

    Article  Google Scholar 

  • Leoni, M. (2008). Diffraction analysis of layer disorder. Zeitschrift Für Kristallographie, 223(9), 561–568. https://doi.org/10.1524/zkri.2008.1214

    Article  Google Scholar 

  • Liu, L., Zhang, C., Jiang, W., Li, X., Dai, Y., & Jia, H. (2021). Understanding the sorption behaviors of heavy metal ions in the interlayer and nanopore of montmorillonite: A molecular dynamics study. Journal of Hazardous Materials, 416, 125976. https://doi.org/10.1016/j.jhazmat.2021.125976

    Article  Google Scholar 

  • Liu, X., & Yang, G. (2022). Mechanisms for cation exchange at the interfaces of montmorillonite nanoparticles: Insights for Pb2+ control. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 641, 128556. https://doi.org/10.1016/j.colsurfa.2022.128556

    Article  Google Scholar 

  • Mahy, J. G., Tsaffo Mbognou, M. H., Léonard, C., Fagel, N., Woumfo, E. D., & Lambert, S. D. (2022). Natural Clay Modified with ZnO/TiO2 to Enhance Pollutant Removal from Water. Catalysts, 12(2), 148. https://doi.org/10.3390/catal12020148

    Article  Google Scholar 

  • Manohar, D. M., Krishnan, K. A., & Anirudhan, T. S. (2002). Removal of mercury (II) from aqueous solutions and chlor-alkali industry wastewater using 2-mercaptobenzimidazole-clay. Water Research, 36(6), 1609–1619. https://doi.org/10.1016/S0043-1354(01)00362-1

    Article  Google Scholar 

  • Marty, N. C., Grangeon, S., Lassin, A., Madé, B., Blanc, P., & Lanson, B. (2020). A quantitative and mechanistic model for the coupling between chemistry and clay hydration. Geochimica et Cosmochimica Acta, 283, 124–135. https://doi.org/10.1016/j.gca.2020.05.029

    Article  Google Scholar 

  • Massaro, M., Lazzara, G., Milioto, S., Noto, R., & Riela, S. (2017). Covalently modified halloysite clay nanotubes: Synthesis, properties, biological and medical applications. Journal of Materials Chemistry B, 5(16), 2867–2882. https://doi.org/10.1039/C7TB00316A

    Article  Google Scholar 

  • Meftah, M., Oueslati, W., & Amara, A.B.H. (2010). Synthesis of zeolites A and P from 1: 1 and HS from 2: 1 clays. In IOP Conference Series: Materials Science and Engineering, 13(1), (p. 1–8). IOP Publishing.

  • Meftah, M., Oueslati, W., & Amara, A. B. H. (2011). XRD and MAS NMR investigation of synthesized zeolite from 2: 1 Tunisian clays: Effect of concentration of NaOH solution on the final product nature. Zeithshrift für Kristallographie, Proceedings, 1, 467–472. https://doi.org/10.1524/zkpr.2011.0071

    Article  Google Scholar 

  • Mejri, C., Oueslati, W., Ben Haj & Amara, A. (2022a). Effect of layer type distribution within the crystallite on the diffracted (00ℓ) theoretical intensities. In E3S Web of Conferences, EDP Sciences, https://doi.org/10.1051/e3sconf/202235403009

  • Mejri, C., Oueslati, W., & Amara, A. B. H. (2021). How the Solid/Liquid Ratio Affects the Cation Exchange Process and Porosity in the Case of Dioctahedral Smectite: Structural Analysis? Adsorption Science & Technology, 2021, 9732092. https://doi.org/10.1155/2021/9732092

    Article  Google Scholar 

  • Mejri, C., Oueslati, W., & Amara, A. B. H. (2022b). Structural Alteration, Hydration Stability, Heavy Metal Removal Efficiency, and Montmorillonite Porosity Fate by Coupling the Soil Solution pH and a Thermal Gradient. Adsorption Science & Technology, 2022, 4421932. https://doi.org/10.1155/2022/4421932

    Article  Google Scholar 

  • Mejri, C., Oueslati, W., & Amara, A. B. H. (2023). Structure and reactivity assessment of dioctahedral montmorillonite during provoked variable sequential cation exchange process via XRD modelling approach. Applied Surface Science Advances, 15, 100403. https://doi.org/10.1016/j.apsadv.2023.100403

    Article  Google Scholar 

  • Mermut, A. R., & Cano, A. F. (2001). Baseline studies of the clay minerals society source clays: Chemical analyses of major elements. Clays and Clay Minerals, 49(5), 381–386.

    Article  Google Scholar 

  • Moldoveanu, G., & Papangelakis, V. (2021). Chelation-assisted ion-exchange leaching of rare earths from clay minerals. Metals, 11(8), 1265. https://doi.org/10.3390/met11081265

    Article  Google Scholar 

  • Moll, W. F., Jr. (2001). Baseline studies of the clay minerals society source clays: Geological origin. Clays and Clay Minerals, 49(5), 374–380.

    Article  Google Scholar 

  • Momeni, M., Bayat, M., & Ajalloeian, R. (2022). Laboratory investigation on the effects of pH-induced changes on geotechnical characteristics of clay soil. Geomechanics and Geoengineering, 17(1), 188–196. https://doi.org/10.1080/17486025.2020.1716084

    Article  Google Scholar 

  • Mousavi, S.M., Hashemi, S.A., Salahi, S., Hosseini, M., Amani, A.M., & Babapoor, A. (2018). Development of clay nanoparticles toward bio and medical applications (pp. 167–191). London, UK: IntechOpen.

  • Neves, H. S. D. C., da Silva, T. L., da Silva, M. G. C., Guirardello, R., & Vieira, M. G. A. (2022). Ion exchange and adsorption of cadmium from aqueous media in sodium-modified expanded vermiculite. Environmental Science and Pollution Research, 29(53), 79903–79919. https://doi.org/10.1007/s11356-021-16841-8

    Article  Google Scholar 

  • Newman, A. C. (Ed.). (1987). Chemistry of Clays and Clay Minerals. Mineralogical Society of Great Britain & Ireland.

    Google Scholar 

  • Nistor, I., & Miron, N. (2007). Depollution of uranyl polluted waters using pillared clays. Journal of Thermal Analysis and Calorimetry, 89, 977–981. https://doi.org/10.1007/s10973-006-7701-4

    Article  Google Scholar 

  • Ohkubo, T., Okamoto, T., Kawamura, K., Guégan, R., Deguchi, K., Ohki, S., Shimizu, T., Tachi, Y., & Iwadate, Y. (2018). New insights into the Cs adsorption on montmorillonite clay from 133Cs solid-state NMR and density functional theory calculations. The Journal of Physical Chemistry A, 122(48), 9326–9337. https://doi.org/10.1021/acs.jpca.8b07276

    Article  Google Scholar 

  • Otunola, B. O., & Ololade, O. O. (2020). A review on the application of clay minerals as heavy metal adsorbents for remediation purposes. Environmental Technology & Innovation, 18, 100692. https://doi.org/10.1016/j.eti.2020.100692

    Article  Google Scholar 

  • Oueslati, W. (2019). Effect of soil solution pH during the tetracycline intercalation on the structural properties of a dioctahedral smectite: Microstructural analysis. Journal of Nanomaterials, 2019, 7414039. https://doi.org/10.1155/2019/7414039

    Article  Google Scholar 

  • Oueslati, W., Ammar, M., & Chorfi, N. (2015). Quantitative XRD analysis of the structural changes of Ba-exchanged montmorillonite: Effect of an in situ hydrous perturbation. Minerals, 5(3), 507–526. https://doi.org/10.3390/min5030507

    Article  Google Scholar 

  • Oueslati, W., Ben Rhaiem, H., Karmous, M. S., Naaman, S., & Ben Haj Amara, A. (2006). Study of the structural evolution and selectivity of Wyoming montmorillonite in relation with the concentration of Cu2+ and Ni2+. Zeitschrift Für Kristallographie, Supplement, 23, 425–429. https://doi.org/10.1524/zksu.2006.suppl_23.425

    Article  Google Scholar 

  • Oueslati, W., Chorfi, N., & Abdelwahed, M. (2017). Effect of mechanical constraint on the hydration properties of Na-montmorillonite: Study under extreme relative humidity conditions. Powder Diffraction, 32(S1), S160–S167.

    Article  Google Scholar 

  • Oueslati, W., Karmous, M. S., Rhaiem, H. B., Lanson, B., & Amara, A. B. H. (2007). Effect of interlayer cation and relative humidity on the hydration properties of a dioctahedral smectite. Zeitschrift Für Kristallographie, Supplement, 26, 417–422.

    Article  Google Scholar 

  • Oueslati, W., & Meftah, M. (2018). Discretization of the water uptake process of Na-montmorillonite undergoing atmospheric stress: XRD modeling approach. Advances in Materials Science and Engineering, 2018, 5219624. https://doi.org/10.1155/2018/5219624

    Article  Google Scholar 

  • Oueslati, W., Mefath, M., Rhaiem, H. B., & Amara, A. B. H. (2009). Cation exchange selectivity versus concentration of competing heavy metal cations (Pb2+, Zn2+): Case of Na-montmorillonite. Physics Procedia, 2(3), 1059–1063. https://doi.org/10.1016/j.phpro.2009.11.063

    Article  Google Scholar 

  • Oueslati, W., Mejri, C., & Amara, A.B.H. (2022a). X-ray Diffraction Profiles Modeling Method for Layered Structures Reconstruction: Nanoclay Structural Verification. In Nanoclay - Recent Advances, New Perspectives and Applications (Ed.), Intechopen (pp. 2–23). https://www.intechopen.com/chapters/83630

  • Oueslati, W., Mejri, C., & Ben Haj Amara, A. (2022b). Impact of Uniaxial Mechanical Perturbation on Structural Properties and Smectite Porosity Features: Ion Exchanger Efficiency and Adsorption Performance Fate. Advances in Civil Engineering, 2022, 4441705. https://doi.org/10.1155/2022/4441705

    Article  Google Scholar 

  • Oueslati, W., Rhaiem, H. B., & Amara, A. B. H. (2011). XRD investigations of hydrated homoionic montmorillonite saturated by several heavy metal cations. Desalination, 271(1–3), 139–149. https://doi.org/10.1016/j.desal.2010.12.018

    Article  Google Scholar 

  • Oueslati, W., Rhaiem, H. B., & Amara, A. B. H. (2012). Effect of relative humidity constraint on the metal exchanged montmorillonite performance: An XRD profile modeling approach. Applied Surface Science, 261, 396–404. https://doi.org/10.1016/j.apsusc.2012.08.022

    Article  Google Scholar 

  • Panchal, A., Fakhrullina, G., Fakhrullin, R., & Lvov, Y. (2018). Self-assembly of clay nanotubes on hair surface for medical and cosmetic formulations. Nanoscale, 10, 18205. https://doi.org/10.1039/C8NR05949G

    Article  Google Scholar 

  • Papadopoulos, A., Giouri, K., Tzamos, E., Filippidis, A., & Stoulos, S. (2014). Natural radioactivity and trace element composition of natural clays used as cosmetic products in the Greek market. Clay Minerals, 49(1), 53–62. https://doi.org/10.1180/claymin.2014.049.1.05

    Article  Google Scholar 

  • Potgieter, J. H., Potgieter-Vermaak, S. S., & Kalibantonga, P. D. (2006). Heavy metals removal from solution by palygorskite clay. Minerals Engineering, 19(5), 463–470. https://doi.org/10.1016/j.mineng.2005.07.004

    Article  Google Scholar 

  • Pufahl, D. E., Fredlund, D. G., & Rahardjo, H. (1983). Lateral earth pressures in expansive clay soils. Canadian Geotechnical Journal, 20(2), 228–241. https://doi.org/10.1139/t83-027

    Article  Google Scholar 

  • Pusch, R., Knutsson, S., Al-Taie, L., & Hatem, M. (2012). Optimal ways of disposal of highly radioactive waste. Natural Science, 4(11A), 906–918. https://doi.org/10.4236/ns.2012.431118

    Article  Google Scholar 

  • Sakharov, B.A., & Lanson, B. (2013). X-ray identification of mixed-layer structures: modelling of diffraction effects. In Developments in Clay Science (Ed.), Handbook of Clay Science (pp. 51–135). Elsevier.

  • Sakharov, B. A., & Drits, V. A. (1973). Mixed-layer kaolinite-montmorillonite: A comparison of observed and calculated diffraction patterns. Clays and Clay Minerals, 21, 15–17. https://doi.org/10.1346/CCMN.1973.0210104

    Article  Google Scholar 

  • Saravanan, S., Ramamurthy, P. C., & Madras, G. (2015). Effects of temperature and clay content on water absorption characteristics of modified MMT clay/cyclic olefin copolymer nanocomposite films: Permeability, dynamic mechanical properties and the encapsulated organic device performance. Composites Part B: Engineering, 73, 1–9. https://doi.org/10.1016/j.compositesb.2014.12.030

    Article  Google Scholar 

  • Sato, T., Watanabe, T., & Otsuka, R. (1992). Effects of layer charge, charge location, and energy change on expansion properties of dioctahedral smectites. Clays and Clay Minerals, 40, 103–113. https://doi.org/10.1346/CCMN.1992.0400111

    Article  Google Scholar 

  • Scardi, P., & Leoni, M. (2002). Whole powder pattern modelling. Acta Crystallographica Section A: Foundations of Crystallography, 58(2), 190–200. https://doi.org/10.1107/S0108767301021298

    Article  Google Scholar 

  • Scardi, P., Leoni, M., & Beyerlein, K. R. (2011). On the modelling of the powder pattern from a nanocrystalline material. Zeitschrift Für Kristallographie, 226(12), 924–933. https://doi.org/10.1524/zkri.2011.1448

    Article  Google Scholar 

  • Scholtzová, E., & Tunega, D. (2019). Density functional theory study of the stability of the tetrabutylphosphonium and tetrabutylammonium montmorillonites. Clay Minerals, 54(1), 41–48. https://doi.org/10.1180/clm.2019.5

    Article  Google Scholar 

  • Schroeder, P. A., Pruett, R. J., & Melear, N. D. (2004). Crystal-chemical changes in an oxidative weathering front in a Georgia kaolin deposit. Clays and Clay Minerals, 52, 211–220. https://doi.org/10.1346/CCMN.2004.0520207

    Article  Google Scholar 

  • Segad, M., Jonsson, B., Åkesson, T., & Cabane, B. (2010). Ca/Na montmorillonite: Structure, forces and swelling properties. Langmuir, 26(8), 5782–5790. https://doi.org/10.1021/la9036293

    Article  Google Scholar 

  • Sellin, P., & Leupin, O. X. (2013). The use of clay as an engineered barrier in radioactive-waste management–a review. Clays and Clay Minerals, 61(6), 477–498. https://doi.org/10.1346/CCMN.2013.0610601

    Article  Google Scholar 

  • Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 32(5), 751–767. https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  • Shi, Y., Zhong, S., Wang, X., & Feng, C. (2022). A review of the removal of heavy metal ions in wastewater by modified montmorillonite. Water Policy, 24(10), 1590–1609. https://doi.org/10.2166/wp.2022.033

    Article  Google Scholar 

  • Sun, L., Hirvi, J. T., Schatz, T., Kasa, S., & Pakkanen, T. A. (2015). Estimation of montmorillonite swelling pressure: A molecular dynamics approach. The Journal of Physical Chemistry C, 119(34), 19863–19868. https://doi.org/10.1021/acs.jpcc.5b04972

    Article  Google Scholar 

  • Tan, J., Li, Y., Xia, L., Li, H., Song, S., Wu, L., & Farías, M. E. (2022). Enhancement of Cd (II) Adsorption on Microalgae-Montmorillonite Composite. Arabian Journal for Science and Engineering, 47(6), 6715–6727. https://doi.org/10.1007/s13369-021-063-y

    Article  Google Scholar 

  • Tan, S. Z., Zhang, K. H., Zhang, L. L., Xie, Y. S., & Liu, Y. L. (2008). Preparation and characterization of the antibacterial Zn2+ or/and Ce3+ loaded montmorillonites. Chinese Journal of Chemistry, 26(5), 865–869. https://doi.org/10.1002/cjoc.200890160

    Article  Google Scholar 

  • Tlemsani, S., Taleb, Z., Piraúlt-Roy, L., & Taleb, S. (2022). Temperature and pH influence on Diuron adsorption by Algerian Mont-Na Clay. International Journal of Environmental Analytical Chemistryhttps://doi.org/10.1080/03067319.2022.2060093

  • Tournassat, C., Grangeon, S., Leroy, P., & Giffaut, E. (2013). Modeling specific pH dependent sorption of divalent metals on montmorillonite surfaces. A review of pitfalls, recent achievements and current challenges. American Journal of Science, https://www.ajsonline.org/content/313/5/395.short

  • Tournassat, C., Davis, J. A., Chiaberge, C., Grangeon, S., & Bourg, I. C. (2016). Modeling the acid–base properties of montmorillonite edge surfaces. Environmental Science & Technology, 50(24), 13436–13445. https://doi.org/10.1021/acs.est.6b04677

    Article  Google Scholar 

  • Usman, A. R. A., Kuzyakov, Y., & Stahr, K. (2004). Effect of clay minerals on extractability of heavy metals and sewage sludge mineralization in soil. Chemistry and Ecology, 20(2), 123–135. https://doi.org/10.1080/02757540410001665971

    Article  Google Scholar 

  • Vidal, O., Baldeyrou, A., Beaufort, D., Fritz, B., Geoffroy, N., & Lanson, B. (2012). Experimental study of the stability and phase relations of clays at high temperature in a thermal gradient. Clays and Clay Minerals, 60, 200–225. https://doi.org/10.1346/CCMN.2012.0600209

    Article  Google Scholar 

  • Wahba, M.M., Labib, B.F., Darwish, K.H.M., & Zaghloul, M.A. (2017). Application of some clay minerals to eliminate the hazards of heavy metals in contaminated soils. In 15th International conference on environmental science and technology, CEST.

  • Wakou, B.N., & Kalinichev, A.G. (2012). Molecular modeling of the swelling properties and interlayer structure of Cs, Na, K-Montmorillonite: Effects of charge distribution in the clay layers. In 5th International meeting Clays in Natural and Engineered Barriers for Radioactive Waste Confinement.

  • Warr, L. N. (2020). Recommended abbreviations for the names of clay minerals and associated phases. Clay Minerals, 55(3), 261–264. https://doi.org/10.1180/clm.2020.30

    Article  Google Scholar 

  • Whitney, D. L., & Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1), 185–187. https://doi.org/10.2138/am.2010.3371

    Article  Google Scholar 

  • Whittaker, M. L., Lammers, L. N., Carrero, S., Gilbert, B., & Banfield, J. F. (2019). Ion exchange selectivity in clay is controlled by nanoscale chemical–mechanical coupling. Proceedings of the National Academy of Sciences, 116(44), 22052–22057. https://doi.org/10.1073/pnas.1908086116

    Article  Google Scholar 

  • Wu, M., Bi, E., & Li, B. (2022). Cotransport of nano-hydroxyapatite and different Cd (II) forms influenced by fulvic acid and montmorillonite colloids. Water Research, 218, 118511. https://doi.org/10.1016/j.watres.2022.118511

    Article  Google Scholar 

  • Yan, H., & Zhang, Z. (2021). Effect and mechanism of cation species on the gel properties of montmorillonite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 611, 125824. https://doi.org/10.1016/j.colsurfa.2020.125824

    Article  Google Scholar 

  • Yin, H., & Zhu, J. (2016). In situ remediation of metal contaminated lake sediment using naturally occurring, calcium-rich clay mineral-based low-cost amendment. Chemical Engineering Journal, 285, 112–120. https://doi.org/10.1016/j.cej.2015.09.108

    Article  Google Scholar 

  • Yingying, S., Baoqiang, Z., & Yang, W.(2020). Application of clay minerals in remediation of heavy metal pollution in soil. In E3S Web of Conferences . EDP Sciences, https://doi.org/10.1051/e3sconf/202020401011

  • Yotsuji, K., Tachi, Y., Sakuma, H., & Kawamura, K. (2021). Effect of interlayer cations on montmorillonite swelling: Comparison between molecular dynamic simulations and experiments. Applied Clay Science, 204, 106034. https://doi.org/10.1016/j.clay.2021.106034

    Article  Google Scholar 

  • Yuan, G.D., Theng, B.K.G., Churchman, G.J., & Gates, W.P. (2013). Clays and clay minerals for pollution control. In Developments in Clay Science (pp. 587–644). Elsevier.

  • Zhang, C., Liu, L., Dai, Y., Zhu, K., Liu, Z., & Jia, H. (2022). Molecular dynamics simulations of exchange behavior of radionuclides into montmorillonite: Unraveling the dynamic processes and microscopic structures. Applied Clay Science, 226, 106579. https://doi.org/10.1016/j.clay.2022.106579

    Article  Google Scholar 

  • Zhang, C., Liu, X., Tinnacher, R. M., & Tournassat, C. (2018). Mechanistic understanding of uranyl ion complexation on montmorillonite edges: A combined first-principles molecular dynamics–surface complexation modeling approach. Environmental Science & Technology, 52(15), 8501–8509. https://doi.org/10.1021/acs.est.8b02504

    Article  Google Scholar 

  • Zhang, W., An, Y., Li, S., Liu, Z., Chen, Z., Ren, Y., Wang, S., Zhang, X., & Wang, X. (2020). Enhanced heavy metal removal from an aqueous environment using an eco-friendly and sustainable adsorbent. Scientific Reports, 10(1), 16453. https://doi.org/10.1038/s41598-020-73570-7

    Article  Google Scholar 

  • Zhang, Y., Li, Y., Li, J., Hu, L., & Zheng, X. (2011). Enhanced removal of nitrate by a novel composite: Nanoscale zero valent iron supported on pillared clay. Chemical Engineering Journal, 171(2), 526–531. https://doi.org/10.1016/j.cej.2011.04.022

    Article  Google Scholar 

  • Zhu, Y., Iroh, J. O., Rajagopolan, R., Aykanat, A., & Vaia, R. (2022). Optimizing the synthesis and thermal properties of conducting polymer–montmorillonite clay nanocomposites. Energies, 15(4), 1291. https://doi.org/10.3390/en15041291

    Article  Google Scholar 

Download references

Acknowledgements

CM acknowledges WO for the original idea for the study, the fruitful discussions about the XRD modeling approach, and the montmorillonite hydration behavior.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

PhD student Chadha Mejri (CM) realized the experimental part, the XRD profile modeling approach and drafting of the manuscript. Dr. Walid Oueslati (WO) supervised the study, contributed to the drafting of the manuscript, and to proof reading/revision. A. Ben Haj Amara conceived and designed the experiments, and played a key role in planning and conceptualizing the research.

Corresponding author

Correspondence to Chadha Mejri.

Ethics declarations

Disclosure

The results presented are a part of the PhD thesis of Chadha Mejri carried out at the Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia and supervised by Dr Walid Oueslati.

Consent for Publication

The authors agree to publication in Clays and Clay Minerals.

Conflicts of Interest

The authors declare no conflict of interest.

Additional information

Associate Editor: Andrey G. Kalinichev

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mejri, C., Oueslati, W. & Ben Haj Amara, A. From Coupling Second-Order Stresses to Understanding and Predicting the Structural Response of a Dioctahedral Smectite. Clays Clay Miner. 71, 513–538 (2023). https://doi.org/10.1007/s42860-023-00253-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42860-023-00253-5

Keywords

Navigation