Skip to main content
Log in

New Method for the Micro- and Nanohardness Measurement of Thin Film of Monolayer Solid by the Indentation of a Sharp Needle of a Cone Tip

  • Published:
Strength of Materials Aims and scope

This study is a mathematical and geometric proof of the expression of the micro- and nanohardness of thin coating resulting from the indentation of a needle form of a cone tip. It is geometric and mathematical modeling of the indentation of the monolayer solid material, where approaches to the coefficients of the model of surfaces mixture are presented. Firstly, formulations of hardness indentations of the composite and the substrate of the mono-layer-coated material have been established. Then, the hardness formula of the thin film of the coating material was derived from the additive law of mixtures. The project imprint result from the indentation of the cone tip on a plane surface is considered as a disk form and the coefficients α and β are ratios of circle surfaces. The hardness of the composite and the substrate of the coating material are expressed as functions of the imprint projected dimensions and the applied load. The contribution of the film to the composite hardness is determined by the model of the surfaces – low mixture of the area – low mixture model. Finally, the expression of the hardness film becomes a function of the composite hardness, the indenter dimension, the imprint dimension, and the film thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Abbreviations

H :

- height of the cone form

R :

- half of diameter of the sharp cone indenter

F :

- load applied to the indenter

S :

- the projected surface of the print

α, β :

- coefficients of the area low mixture model

r :

- diameter of the composite projected surface (measured by experiments)

r :

- diameter of the projected surface of the substrate

e :

- film thickness

h :

- depth of the imprint

H con :

- hardness of the massif materiel of the cone indenter

H c :

- composite hardness

H f :

- hardness of the film

H s :

- hardness of the substrate

S c :

- surface of the composite imprint project

S f :

- surface of the film imprint project

S s :

- surface of the substrate imprint project

References

  1. W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J Mater Res, 7, 1564–1583 (1992).

    Article  CAS  Google Scholar 

  2. X. Li and B. Bhushan, “A review of nanoindentation continuous stiffness measurement technique and its applications,” Mater Charact, 48, No. 1, 11–36 (2002).

    Article  CAS  Google Scholar 

  3. X. Li and B. Bhushan, “Measurement of fracture toughness of ultra-thin amorphous carbon films,” Thin Solid Films, 315, Nos. 1–2, 214–221 (1998).

    Article  CAS  Google Scholar 

  4. X. Li and B. Bhushan, “Evaluation of fracture toughness of ultra-thin amorphous carbon coatings deposited by different deposition techniques,” Thin Solid Films, 355, 330–336 (1999).

    Article  Google Scholar 

  5. Y. Y. Lim and M. M. Chaudhri, “Indentation of elastic solids with rigid cones,” Philos Mag, 84, No. 27, 2877–2903 (2004).

    Article  CAS  Google Scholar 

  6. S. Chen, L. Liu, and T. Wang, “Investigation of the mechanical properties of thin films by nanoindentation, considering the effects of thickness and different coating–substrate combinations,” Surf Coat Tech, 191, No. 1, 25–32 (2005).

    Article  CAS  Google Scholar 

  7. B. Jönsson and S. Hogmark, “Hardness measurements of thin films,” Thin Solid Films, 114, No. 3, 257–269 (1984).

    Article  Google Scholar 

  8. P. J. Blau, Microindentation Techniques in Materials Science and Engineering, ASTM International, Philadelphia (1986).

    Google Scholar 

  9. E. S. Puchi-Cabrera, “A new model for the computation of the composite hardness of coated systems,” Surf Coat Tech, 160, Nos. 2–3, 177–186 (2002).

    Article  CAS  Google Scholar 

  10. M. Tazaki, M. Nishibori, and K. Kinosita, “Ultra-microhardness of vacuum-deposited films II: Results for silver, gold, copper, MgF2, LiF and ZnS,” Thin Solid Films, 51, No. 1, 13–21(1978).

    Article  CAS  Google Scholar 

  11. D. Lebouvier, P. Gilormini, and E. Felder, “A kinematic solution for plane-strain indentation of a bi-layer,” J Phys D Appl Phys, 18, No. 2, 199 (1985).

  12. A. Thomas, “Microhardness measurement as a quality control technique for thin, hard coatings,” Surf Eng, 3, 117–122 (1987).

    Article  Google Scholar 

  13. P. J. Burnett and D. S. Rickerby, “The mechanical properties of wear-resistant coatings: I: Modelling of hardness behavior,” Thin Solid Films, 148, No. 1, 41–50 (1987).

    Article  CAS  Google Scholar 

  14. P. J. Burnett and D. S. Rickerby, “Assessment of coating hardness,” Surf Eng, 3, No. 1, 69–76 (1987).

    Article  CAS  Google Scholar 

  15. D. Lebouvier, P. Gilormini, and E. Felder, “A kinematic model for plastic indentation of a bilayer,” Thin Solid Films, 172, No. 2, 227–239 (1989).

    Article  CAS  Google Scholar 

  16. S. J. Bull and D. S. Rickerby, “New developments in the modelling of the hardness and scratch adhesion of thin films,” Surf Coat Tech, 42, No. 2, 149–164 (1990).

    Article  CAS  Google Scholar 

  17. I. J. Ford, “A cavity model of the indentation hardness of a coated substrate,” Thin Solid Films, 245, Nos. 1–2, 122–131 (1994).

    Article  CAS  Google Scholar 

  18. D. Chicot and J. Lesage, “Absolute hardness of films and coatings,” Thin Solid Films, 254, Nos. 1–2, 123–130 (1995).

    Article  CAS  Google Scholar 

  19. N. G. Chechenin, J. Bøttiger, and J. P. Krog, “Nanoindentation of amorphous aluminum oxide films I. The influence of the substrate on the plastic properties,” Thin Solid Films, 261, Nos. 1–2, 219–227 (1995).

    Article  CAS  Google Scholar 

  20. A. M. Korsunsky, M. R. McGurk, S. J. Bull, and T. F. Page, “On the hardness of coated systems,” Surf Coat Tech, 99, Nos. 1–2, 171–183 (1998).

    Article  CAS  Google Scholar 

  21. J. V. Fernandes, L. F. Menezes, and A. C. Trindade, “The coated surface hardness: a kinematic model,” Thin Solid Films, 335, Nos. 1–2, 153–159 (1998).

    Article  CAS  Google Scholar 

  22. J. V. Fernandes, A. C. Trindade, L. F. Menezes, and A. Cavaleiro, “A model for coated surface hardness,” Surf Coat Tech, 131, Nos. 1–3, 457–461 (2000).

    Article  CAS  Google Scholar 

  23. D. Chicot, L. Gil, K. Silva, et al., “Thin film hardness determination using indentation loading curve modelling,” Thin Solid Films, 518, No. 19, 5565–5571 (2010).

    Article  CAS  Google Scholar 

  24. J. Qin, Y. Huang, K. C. Hwang, et al., “The effect of indenter angle on the microindentation hardness,” Acta Mater, 55, No. 18, 6127–6132 (2007).

    Article  CAS  Google Scholar 

  25. D. Tabor, The Hardness of Metals, Clarendon Press, Oxford (1951).

    Google Scholar 

  26. H. M. Mallikarjuna, C. Siddaraju, H. S. Kumar, and P. G. Koppad, “Nanohardness and wear behavior of copper-SiC-CNTs nanocomposites,” FME Transactions, 48, No. 3, 688–692 (2020).

    Article  Google Scholar 

  27. I. Elizabeth, R. Kumar, N. Garg, et al., “Measurement uncertainty evaluation in Vickers hardness scale using law of propagation of uncertainty and Monte Carlo simulation,” MAPAN, 34, 317–323 (2019). https://doi.org/10.1007/s12647-019-00341-9

    Article  Google Scholar 

  28. A. S. Alaboodi and Z. Hussain, “Finite element modeling of nano-indentation technique to characterize thin film coatings,” Journal of King Saud University-Engineering Sciences, 31, No. 1, 61–69 (2019).

    Article  Google Scholar 

  29. W. Wen, A. A. Becker, and W. Sun, “Determination of material properties of thin films and coatings using indentation tests: a review,” J Mater Sci, 52, No. 21, 12553–12573 (2017).

    Article  CAS  Google Scholar 

  30. M. Li, H. X. Zhang, Z. L. Zhao, and X. Q. Feng, “Surface effects on cylindrical indentation of a soft layer on a rigid substrate,” Acta Mech Sin, 36, No. 2, 422–429 (2020).

    Article  Google Scholar 

  31. A. Needleman, V. Tvergaard, and E. Van der Giessen, “Indentation of elastically soft and plastically compressible solids,” Acta Mech Sin, 31, No. 4, 473–480 (2015).

    Article  Google Scholar 

  32. G. Costanza, F. Mercuri, and M. E. Tata, “Mechanical and surface properties of Ti-sputtered thin films,” Int J Surf Sci Eng, 2, No. 5, 366–375 (2008).

    Article  CAS  Google Scholar 

  33. D. H. Kim, P. Hwang, J. K. Kim, and M. L. Sham, “Indentation properties of copper leadframe with hard coatings,” Met Mater-Korea, 4, No. 4, 812–817 (1998). https://doi.org/10.1007/BF03026404

    Article  CAS  Google Scholar 

  34. M. Gunda, P. Kumar, and M. Katiyar, “Review of mechanical characterization techniques for thin films used in flexible electronics,” Crit Rev Solid State, 42, No. 2, 129–152 (2017).

    Article  CAS  Google Scholar 

  35. Siu Wah Wai, Rapid Assessment of Paint Coatings by Micro and Nano Indentation Methods, Doctor of Philosophy Thesis, School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong (2013). https://ro.uow.edu.au/theses/3873

  36. M. M. Renjo, V. Rede, and L. Curkovic, “Reverse indentation size effect of a duplex steel,” Kovove Materials, 52, 299–304 (2014).

    Article  CAS  Google Scholar 

  37. P. L. Larsson, “Principal stress ratio effect at residual stress determination utilizing the variation of indentation hardness,” Lubricants, 7, No. 6, 50 (2019).

  38. S. Sagadevan and P. Murugasen, “Novel analysis on the influence of tip radius and shape of the nanoindenter on the hardness of materials,” Proc Mat Sci, 6, 1871–1878 (2014).

    CAS  Google Scholar 

  39. Y. R. van Veen, A. Jahya, and S. Misra, “Macroscopic and microscopic observations of needle insertion into gels,” P I Mech Eng H, 226, No. 6, 441–449 (2012).

    Article  Google Scholar 

  40. A. Boudilmi and K. Loucif, “The indentation performance of a novel indenter with a prolate spheroid tip,” Strength Mater, 54, No. 1, 154–164 (2022). https://doi.org/10.1007/s11223-022-00389-0

    Article  Google Scholar 

  41. S. Conti, H. Olbermann, and I. Tobasco, “Symmetry breaking in indented elastic cones,” Math Models Methods Appl Sci, 27, 291–321 (2017). https://doi.org/10.1142/S0218202517500026

    Article  Google Scholar 

  42. A. Boudilmi and K. Loucif, “Hardness measurements via an ellipsoid-shaped indenter,” Strength Mater, 48, No. 3, 419–425 (2016). https://doi.org/10.1007/s11223-016-9780-1

    Article  Google Scholar 

  43. A. Boudilmi and K. Loucif, “Modelling of thin films hardness measured by a spherical indenter,” Metallofiz Nov Tekh, 40, No. 12, 1689–1697 (2018).

    Article  CAS  Google Scholar 

  44. G. Farges and D. Degout, “Effet de taille d’empreinte en microdureté Vickers,” Traitement Thermique, 246, 81–88 (1991).

    Google Scholar 

  45. O. Vingsbo, S. Hogmark, B. Jonsson, and A. Ingemarsson, Microindentation Techniques in Materials Science and Engineering, ASTM, Philadelphia (1986).

    Google Scholar 

  46. A. Boudilmi and K. Loucif, “A theoretical study of indentation with an oblate spheroid shape,” Trans Indian Inst Met, 70, No. 6, 1527–1531 (2017). https://doi.org/10.1007/s12666-016-0949-x

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the supports from the general directorate of Scientific Research and Technological Development (DGRSDT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Boudilmi.

Additional information

Translated from Problemy Mitsnosti, No. 4, p. 118, July-August, 2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boudilmi, A., Loucif, K., Slamani, M. et al. New Method for the Micro- and Nanohardness Measurement of Thin Film of Monolayer Solid by the Indentation of a Sharp Needle of a Cone Tip. Strength Mater 55, 800–813 (2023). https://doi.org/10.1007/s11223-023-00571-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-023-00571-y

Keywords

Navigation