Skip to main content
Log in

miR-20b-5p exerts protective effects against experimental autoimmune encephalomyelitis in mice by inhibiting NLRP3 transcription and NLRP3/ASC/caspase-1 axis activation

  • Original Article
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Background

Experimental autoimmune encephalomyelitis (EAE) is a fatal autoimmune disease, and microRNAs (miRNAs) play vital roles in regulating immune responses.

Objectives

This study aimed to explore the effect of miR-20b-5p in mice with EAE as well as the underlying mechanism.

Methods

An EAE mouse model was established via myelin oligodendrocyte glycoprotein (MOG)35–55 peptide induction, and miR-20b-5p expression was measured. Then, miR-20b-5p agomiR was injected via the caudal vein. Clinical score evaluation, body weight measurement, and histological staining were performed, and lactic dehydrogenase (LDH), superoxide dismutase (SOD), catalase (CAT) and reactive oxygen species (ROS) levels were measured. The binding of miR-20b-5p to Nod-like receptor protein 3 (NLRP3) was analysed by dual-luciferase assay. Levels of NLRP3, ASC and caspase-1 were measured. The effect of NLRP3 on EAE model mice was analysed via rescue experiments.

Results

The clinical scores and body weight of EAE model mice were reduced, and tissue damage was exacerbated. miR-20b-5p was expressed at low levels in EAE model mice, and their symptoms were ameliorated after miR-20b-5p overexpression. Moreover, miR-20b-5p overexpression alleviated pyroptosis, inflammation and oxidative stress in the spinal cord tissues of EAE model mice. Mechanistically, miR-20b-5p targeted NLRP3 transcription and inhibited NLRP3/ASC/caspase-1 pathway activation. NLRP3 overexpression activated the NLRP3/ASC/caspase-1 pathway and abolished the protective effect of miR-20b-5p on EAE.

Conclusion

miR-20b-5p exerted a protective effect on EAE in mice by inhibiting NLRP3 transcription and NLRP3/ASC/caspase-1 pathway activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Baltimore D, Boldin MP, O’Connell RM, Rao DS, Taganov KD (2008) MicroRNAs: new regulators of immune cell development and function. Nat Immunol 9(8):839–845

    Article  CAS  PubMed  Google Scholar 

  • Barclay W, Shinohara ML (2017) Inflammasome activation in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). Brain Pathol 27(2):213–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bjelobaba I, Begovic-Kupresanin V, Pekovic S, Lavrnja I (2018) Animal models of multiple sclerosis: focus on experimental autoimmune encephalomyelitis. J Neurosci Res 96(6):1021–1042

    Article  CAS  PubMed  Google Scholar 

  • Chopra N, Wang R, Maloney B, Nho K, Beck JS, Pourshafie N, Niculescu A, Saykin AJ, Rinaldi C, Counts SE et al (2021) MicroRNA-298 reduces levels of human amyloid-beta precursor protein (APP), beta-site APP-converting enzyme 1 (BACE1) and specific tau protein moieties. Mol Psychiatry 26(10):5636–5657

    Article  CAS  PubMed  Google Scholar 

  • Chu F, Shi M, Lang Y, Shen D, Jin T, Zhu J, Cui L (2018) Gut Microbiota in multiple sclerosis and experimental autoimmune encephalomyelitis: current applications and future perspectives. Mediators Inflamm 2018:8168717

    Article  PubMed  PubMed Central  Google Scholar 

  • Constantinescu CS, Farooqi N, O’Brien K, Gran B (2011) Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol 164(4):1079–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan X, Zhan E, Yao Y, Zhang R, Sun Y, Tian X (2021) MiR-599 protects cardiomyocytes against oxidative stress-induced pyroptosis. Biomed Res Int 2021:3287053

    Article  PubMed  PubMed Central  Google Scholar 

  • Fletcher JM, Lalor SJ, Sweeney CM, Tubridy N, Mills KH (2010) T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Exp Immunol 162(1):1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraga-Silva TF, Mimura LA, Marchetti CM, Chiuso-Minicucci F, Franca TG, Zorzella-Pezavento SF, Venturini J, Arruda MS, Sartori A (2015) Experimental autoimmune encephalomyelitis development is aggravated by Candida albicans infection. J Immunol Res 2015:635052

    Article  PubMed  PubMed Central  Google Scholar 

  • Glatigny S, Bettelli E (2018) Experimental Autoimmune Encephalomyelitis (EAE) as Animal Models of Multiple Sclerosis (MS). Cold Spring Harb Perspect Med 8 (11)

  • Gu C (2016) KIR4.1: K(+) Channel Illusion or Reality in the Autoimmune Pathogenesis of Multiple Sclerosis. Front Mol Neurosci 9 90.

  • Guide for the Care and Use of Laboratory Animals. 8th ed, Washington (DC) (2011)

  • Hou H, Miao J, Cao R, Han M, Sun Y, Liu X, Guo L (2017) Rapamycin ameliorates experimental autoimmune encephalomyelitis by suppressing the mTOR-STAT3 pathway. Neurochem Res 42(10):2831–2840

    Article  CAS  PubMed  Google Scholar 

  • Hou B, Zhang Y, Liang P, He Y, Peng B, Liu W, Han S, Yin J, He X (2020) Inhibition of the NLRP3-inflammasome prevents cognitive deficits in experimental autoimmune encephalomyelitis mice via the alteration of astrocyte phenotype. Cell Death Dis 11(5):377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingwersen J, Menge T, Wingerath B, Kaya D, Graf J, Prozorovski T, Keller A, Backes C, Beier M, Scheffler M et al (2015) Natalizumab restores aberrant miRNA expression profile in multiple sclerosis and reveals a critical role for miR-20b. Ann Clin Transl Neurol 2(1):43–55

    Article  CAS  PubMed  Google Scholar 

  • Inoue M, Shinohara ML (2013) NLRP3 Inflammasome and MS/EAE. Autoimmune Dis 2013:859145

    PubMed  PubMed Central  Google Scholar 

  • Jahan-Abad AJ, Karima S, Shateri S, Baram SM, Rajaei S, Morteza-Zadeh P, Borhani-Haghighi M, Salari AA, Nikzamir A, Gorji A (2020) Serum pro-inflammatory and anti-inflammatory cytokines and the pathogenesis of experimental autoimmune encephalomyelitis. Neuropathology 40(1):84–92

    Article  CAS  PubMed  Google Scholar 

  • Juzwik CA, Drake S, Lecuyer MA, Johnson RM, Morquette B, Zhang Y, Charabati M, Sagan SM, Bar-Or A, Prat A et al (2018) Neuronal microRNA regulation in experimental autoimmune encephalomyelitis. Sci Rep 8(1):13437

    Article  PubMed  PubMed Central  Google Scholar 

  • Kiasalari Z, Afshin-Majd S, Baluchnejadmojarad T, Azadi-Ahmadabadi E, Esmaeil-Jamaat E, Fahanik-Babaei J, Fakour M, Fereidouni F, Ghasemi-Tarie R, Jalalzade-Ogvar S et al (2021a) Ellagic acid ameliorates neuroinflammation and demyelination in experimental autoimmune encephalomyelitis: Involvement of NLRP3 and pyroptosis. J Chem Neuroanat 111:101891

    Article  CAS  PubMed  Google Scholar 

  • Kiasalari Z, Afshin-Majd S, Baluchnejadmojarad T, Azadi-Ahmadabadi E, Fakour M, Ghasemi-Tarie R, Jalalzade-Ogvar S, Khodashenas V, Tashakori-Miyanroudi M, Roghani M (2021b) Sinomenine alleviates murine experimental autoimmune encephalomyelitis model of multiple sclerosis through inhibiting NLRP3 inflammasome. J Mol Neurosci 71(2):215–224

    Article  CAS  PubMed  Google Scholar 

  • Lassmann H, Bradl M (2017) Multiple sclerosis: experimental models and reality. Acta Neuropathol 133(2):223–244

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Liu F, He X, Yang X, Shan F, Feng J (2019) Exosomes derived from mesenchymal stem cells attenuate inflammation and demyelination of the central nervous system in EAE rats by regulating the polarization of microglia. Int Immunopharmacol 67:268–280

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Nourbakhsh N, Pham H, Tham R, Zuckerman JE, Singh P (2020) Evolution of altered tubular metabolism and mitochondrial function in sepsis-associated acute kidney injury. Am J Physiol Renal Physiol 319(2):F229–F244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu F, Li Z, He X, Yu H, Feng J (2019) Ghrelin Attenuates neuroinflammation and demyelination in experimental autoimmune encephalomyelitis involving NLRP3 inflammasome signaling pathway and pyroptosis. Front Pharmacol 10:1320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Lou J, Wang Y, Zhang Z, Qiu W (2017) MiR-20b inhibits mycobacterium tuberculosis induced inflammation in the lung of mice through targeting NLRP3. Exp Cell Res 358(2):120–128

    Article  CAS  PubMed  Google Scholar 

  • Meza-Sosa KF, Valle-Garcia D, Pedraza-Alva G, Perez-Martinez L (2012) Role of microRNAs in central nervous system development and pathology. J Neurosci Res 90(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Murphy AC, Lalor SJ, Lynch MA, Mills KH (2010) Infiltration of Th1 and Th17 cells and activation of microglia in the CNS during the course of experimental autoimmune encephalomyelitis. Brain Behav Immun 24(4):641–651

    Article  CAS  PubMed  Google Scholar 

  • Robinson AP, Harp CT, Noronha A, Miller SD (2014) The experimental autoimmune encephalomyelitis (EAE) model of MS: utility for understanding disease pathophysiology and treatment. Handb Clin Neurol 122:173–189

    Article  PubMed  PubMed Central  Google Scholar 

  • Shaw PJ, Lukens JR, Burns S, Chi H, McGargill MA, Kanneganti TD (2010) Cutting edge: critical role for PYCARD/ASC in the development of experimental autoimmune encephalomyelitis. J Immunol 184(9):4610–4614

    Article  CAS  PubMed  Google Scholar 

  • Shen C, Zhang Z, Xie T, Xu J, Yan J, Kang A, Dai Q, Wang S, Ji J, Shan J (2018) Jinxin oral liquid inhibits human respiratory syncytial virus-induced excessive inflammation associated with blockade of the NLRP3/ASC/caspase-1 pathway. Biomed Pharmacother 103:1376–2138

    Article  PubMed  Google Scholar 

  • Singh RP, Massachi I, Manickavel S, Singh S, Rao NP, Hasan S, Mc Curdy DK, Sharma S, Wong D, Hahn BH et al (2013) The role of miRNA in inflammation and autoimmunity. Autoimmun Rev 12(12):1160–1165

    Article  CAS  PubMed  Google Scholar 

  • Song L, Pei L, Yao S, Wu Y, Shang Y (2017) NLRP3 inflammasome in neurological diseases, from functions to therapies. Front Cell Neurosci 11:63

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun L, Ma W, Gao W, Xing Y, Chen L, Xia Z, Zhang Z, Dai Z (2019) Propofol directly induces caspase-1-dependent macrophage pyroptosis through the NLRP3-ASC inflammasome. Cell Death Dis 10(8):542

    Article  PubMed  PubMed Central  Google Scholar 

  • Urwanisch L, Luciano M, Horejs-Hoeck J (2021) The NLRP3 inflammasome and its role in the pathogenicity of Leukemia. Int J Mol Sci 22(3):2171

    Article  Google Scholar 

  • Wang R, Lahiri DK (2022) Effects of microRNA-298 on APP and BACE1 translation differ according to cell type and 3’-UTR variation. Sci Rep 12(1):3074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Yuan YH, Chen NH, Wang HB (2019) The mechanisms of NLRP3 inflammasome/pyroptosis activation and their role in Parkinson’s disease. Int Immunopharmacol 67:458–464

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Du S, Lv Y, Wang W, Zhang F (2020) Elevated microRNA-20b-3p and reduced thioredoxin-interacting protein ameliorate diabetic retinopathy progression by suppressing the NLRP3 inflammasomes. IUBMB Life 72(7):1433–1448

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Chopra N, Nho K, Maloney B, Obukhov AG, Nelson PT, Counts SE, Lahiri DK (2022) Human microRNA (miR-20b-5p) modulates Alzheimer’s disease pathways and neuronal function, and a specific polymorphism close to the MIR20B gene influences Alzheimer’s biomarkers. Mol Psychiatry 27(2):1256–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weaver A, Goncalves da Silva A, Nuttall RK, Edwards DR, Shapiro SD, Rivest S, Yong VW (2005) An elevated matrix metalloproteinase (MMP) in an animal model of multiple sclerosis is protective by affecting Th1/Th2 polarization. FASEB J 19(12):1668–1670

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Zhang H, Qi W, Zhang Y, Li J, Li Z, Lin Y, Bai X, Liu X, Chen X et al (2018) Nicotine promotes atherosclerosis via ROS-NLRP3-mediated endothelial cell pyroptosis. Cell Death Dis 9(2):171

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu L, Xia J, Li D, Kang Y, Fang W, Huang P (2020) Mechanisms of M2 Macrophage-Derived Exosomal Long Non-coding RNA PVT1 in Regulating Th17 Cell Response in Experimental Autoimmune Encephalomyelitisa. Front Immunol 11:1934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue Z, Zhang Z, Liu H, Li W, Guo X, Zhang Z, Liu Y, Jia L, Li Y, Ren Y et al (2019) lincRNA-Cox2 regulates NLRP3 inflammasome and autophagy mediated neuroinflammation. Cell Death Differ 26(1):130–145

    Article  CAS  PubMed  Google Scholar 

  • Zhang GX, Gran B, Yu S, Li J, Siglienti I, Chen X, Kamoun M, Rostami A (2003) Induction of experimental autoimmune encephalomyelitis in IL-12 receptor-beta 2-deficient mice: IL-12 responsiveness is not required in the pathogenesis of inflammatory demyelination in the central nervous system. J Immunol 170(4):2153–2160

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Yang J, Jiang H, Han S (2014) An alphanubeta3 integrin-binding peptide ameliorates symptoms of chronic progressive experimental autoimmune encephalomyelitis by alleviating neuroinflammatory responses in mice. J Neuroimmune Pharmacol 9(3):399–412

    Article  CAS  PubMed  Google Scholar 

  • Zhu E, Wang X, Zheng B, Wang Q, Hao J, Chen S, Zhao Q, Zhao L, Wu Z, Yin Z (2014) miR-20b suppresses Th17 differentiation and the pathogenesis of experimental autoimmune encephalomyelitis by targeting RORgammat and STAT3. J Immunol 192(12):5599–5609

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

No relevant funding was received.

Author information

Authors and Affiliations

Authors

Contributions

FZ and FW: conceived and designed the experiments. FZ, XW, SY, WT, and OL: performed the experiments. FZ, XW, and WT: wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Ou Lv.

Ethics declarations

Conflict of interest

Fenggang Zhou, Fei Wu, Xinran Wang, Shihua Yu, Wenqi Tian, and Ou Lv declares that has no conflict of interest.

Ethical approval

All animal experiments were conducted in compliance with the guidelines for experimental animal care and use (2011), and were approved by the Ethic Committee of The Second Affiliated Hospital of Harbin Medical University (SYDW2023-043). Adequate measures were taken to minimize animal suffering. All procedures were strictly implemented by the code of ethics.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, F., Wu, F., Wang, X. et al. miR-20b-5p exerts protective effects against experimental autoimmune encephalomyelitis in mice by inhibiting NLRP3 transcription and NLRP3/ASC/caspase-1 axis activation. Mol. Cell. Toxicol. (2023). https://doi.org/10.1007/s13273-023-00398-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13273-023-00398-3

Keywords

Navigation