Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-28T05:32:05.395Z Has data issue: false hasContentIssue false

Minasgeraisite-(Y) discredited as an ordered intermediate between datolite and hingganite-(Y)

Published online by Cambridge University Press:  01 September 2023

Daniel Atencio*
Affiliation:
Instituto de Geociências, Universidade de São Paulo, Brazil
*
Corresponding author: Daniel Atencio; Email: datencio@usp.br

Abstract

Minasgeraisite-(Y) is discredited on the basis of it being an ordered intermediate between datolite and hingganite-(Y) (IMA-CNMNC Proposal 23-F). An idealised formula is (Ca2Y2)□2(Be2B2)Si4O16(OH)4, which corresponds to Ca2□B2Si2O8(OH)2 (datolite) + Y2□Be2Si2O8(OH)2 (hingganite-(Y)). The type material is rich in Bi, the Bi-richest portion yet discovered from the type locality is shown to be an intermediate member between datolite, hingganite-(Y) and a hypothetical end-member phase yet to be found of composition Bi2□Be2Si2O8(OH)2. Minasgeraisite-(Y) has a different space group to datolite and hingganite-(Y). This lowering of symmetry to an acentric triclinic system is caused by different element occupancies on the A site of the gadolinite supergroup structure, which for minasgeraisite-(Y) becomes four individual sites. Such an order–disorder of elements is not considered as species-defining criteria despite the change in space group. Therefore, minasgeraisite-(Y) is discredited.

Type
Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Michael Rumsey

References

Allaz, J.M., Smyth, J.R., Henry, R.E., Stern, C.R., Persson, P., Ma, J.J. and Raschke, M.B. (2020) Beryllium-silicon disorder and rare earth crystal chemistry in gadolinite from the White Cloud pegmatite, Colorado, USA. The Canadian Mineralogist, 58, 829845.CrossRefGoogle Scholar
Atencio, D. (2023) 23-F: Discreditation of minasgeraisite-(Y), Newsletter 73. Mineralogical Magazine, 87, 639643, https://doi.org/10.1180/mgm.2023.44Google Scholar
Bačík, P., Fridrichová, J., Uher, P., Pršek, J. and Ondrejka, M. (2014) Crystal chemistry of gadolinite-datolite group silicates. The Canadian Mineralogist, 51, 625642.CrossRefGoogle Scholar
Bačík, P., Miyawaki, R., Atencio, D., Cámara, F. and Fridrichová, J. (2017) Nomenclature of the gadolinite supergroup. European Journal of Mineralogy, 29, 10671082.CrossRefGoogle Scholar
Bayliss, P. and Levinson, A.A. (1988) A system of nomenclature for rare-earth mineral species: Revision and extension. American Mineralogist, 73, 422423.Google Scholar
Cooper, M.A. and Hawthorne, F.C. (2018) Cation order in the crystal structure of ‘minasgeraisite-(Y)’. Mineralogical Magazine, 82, 301312.CrossRefGoogle Scholar
Cooper, M.A., Hawthorne, F.C., Miyawaki, R. and Kristiansen, R. (2019) Cation order in the crystal structure of ‘Ca-Hingganite-(Y)’. The Canadian Mineralogist, 57, 371382.CrossRefGoogle Scholar
Demartin, F., Minaglia, A. and Gramaccioli, C.M. (2001) Characterization of gadolinite-group minerals using crystallographic data only: the case of hingganite-(Y) from Cuasso al Monte, Italy. The Canadian Mineralogist, 39, 11051114.CrossRefGoogle Scholar
Foord, E.E., Gaines, R.V., Crock, J.G., Simmons, W.B. Jr. and Barbosa, C.P. (1986) Minasgeraisite, a new member of the gadolinite group from Minas Gerais, Brazil. American Mineralogist, 71, 603607.Google Scholar
Momma, K. and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 12721276.CrossRefGoogle Scholar
Nickel, E. H. and Grice, J. D. (1998) The IMA Commission on New Minerals and Mineral Names: Procedure and guideline on mineral nomenclature, 1998. The Canadian Mineralogist, 36, 913926.Google Scholar
Vereshchagin, O., Gorelova, L., Shagova, A., Kasatkin, A., Škoda, R., Bocharov, V. and Galiová, M. (2023) Re-investigation of ‘minasgeraisite-(Y)’ from the Jaguaraçu pegmatite, Brazil and high-temperature crystal chemistry of gadolinite supergroup minerals. Mineralogical Magazine, 87, 470479, https://doi:10.1180/mgm.2023.19.CrossRefGoogle Scholar