Skip to main content
Log in

Molybdenum disulfide@nickel phyllosilicate hybrid for improving the flame retardancy and wear resistance of epoxy composites

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, nickel phyllosilicate was synthesized based on molybdenum disulfide (MoS2@NiPS) by the sol-gel method, and then MoS2@NiPS was used to prepare epoxy composites. The thermal stability, flame retardancy, and frictional performances of epoxy composites were studied. With the addition of 3 wt% MoS2@NiPS, the epoxy composite increased the limiting oxygen index from 23.8% to 26.1% and reduced the vertical burning time from 166 s for epoxy resin to 35 s. The residual char of the epoxy composite increased from 11.8 to 20.2 wt%. MoS2@NiPS promoted the graphitization of the residual char, and facilitated the formation of a dense and continuous char layer, thereby improving the fire safety of epoxy resin. The epoxy composite with 3 wt% MoS2@NiPS had excellent wear resistance property with a wear rate of 2.19 × 10−5 mm3·N−1·m−1, which was 68.8% lower than that of epoxy resin. This study presented a practical approach to improve the frictional and fire resistance of epoxy composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pourchet S, Sonnier R, Ben-Abdelkader M, Gaillard Y, Ruiz Q, Placet V, Plasseraud L, Boni G. New reactive isoeugenol based phosphate flame retardant: toward green epoxy resins. ACS Sustainable Chemistry & Engineering, 2019, 7(16): 14074–14088

    Article  CAS  Google Scholar 

  2. Tang G, Zhao R Q, Deng D, Yang Y D, Chen D P, Zhang B, Liu X L, Liu X Y. Self-extinguishing and transparent epoxy resin modified by a phosphine oxide-containing bio-based derivative. Frontiers of Chemical Science and Engineering, 2021, 15(5): 1269–1280

    Article  CAS  Google Scholar 

  3. Wu T, Yang F H, Tao J, Zhao H B, Yu C B, Rao W H. Design of P-decorated POSS towards flame-retardant, mechanically-strong, tough and transparent epoxy resins. Journal of Colloid and Interface Science, 2023, 640: 864–876

    Article  CAS  PubMed  Google Scholar 

  4. Wetzel B, Haupert F, Qiu Zhang M. Epoxy nanocomposites with high mechanical and tribological performance. Composites Science and Technology, 2003, 63(14): 2055–2067

    Article  CAS  Google Scholar 

  5. Chang L, Zhang Z, Ye L, Friedrich K. Tribological properties of epoxy nanocomposites: III. Characteristics of transfer films. Wear, 2007, 262(5–6): 699–706

    Article  CAS  Google Scholar 

  6. Morgan A B. The future of flame retardant polymers—unmet needs and likely new approaches. Polymer Reviews (Philadelphia, Pa.), 2019, 59(1): 25–54

    Article  CAS  Google Scholar 

  7. Carosio F, Fina A. Three organic/inorganic nanolayers on flexible foam allow retaining superior flame retardancy performance upon mechanical compression cycles. Frontiers in Materials, 2019, 6: 20

    Article  Google Scholar 

  8. Pan Y, Liu L X, Cai W, Hu Y, Jiang S D, Zhao H T. Effect of layer-by-layer self-assembled sepiolite-based nanocoating on flame retardant and smoke suppressant properties of flexible polyurethane foam. Applied Clay Science, 2019, 168: 230–236

    Article  CAS  Google Scholar 

  9. Yu B, Shi Y Q, Yuan B H, Qiu S L, Xing W Y, Hu W Z, Song L, Lo S M, Hu Y. Thermal and flame retardant properties of flame-retardant-wrapped graphene/epoxy resin nanocomposites. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(15): 8034–8044

    Article  CAS  Google Scholar 

  10. Yu B, Tawiah B, Wang L Q, Yuen A C Y, Zhang Z C, Shen L L, Lin B, Fei B, Yang W, Li A, et al. Interface decoration of exfoliated MXene ultra-thin nanosheets for fire and smoke suppressions of thermoplastic polyurethane elastomer. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 374: 110–119

    CAS  Google Scholar 

  11. Yan L, Xu Z S, Zhang J. Influence of nanoparticle geometry on the thermal stability and flame retardancy of high-impact polystyrene nanocomposites. Journal of Thermal Analysis and Calorimetry, 2017, 130(3): 1987–1996

    Article  CAS  Google Scholar 

  12. Dittrich B, Wartig K A, Hofmann D, Müelhaupt R, Schartel B. The influence of layered, spherical, and tubular carbon nanomaterials’ concentration on the flame retardancy of polypropylene. Polymer Composites, 2015, 36(7): 1230–1241

    Article  CAS  Google Scholar 

  13. Bian Z F, Kawi S. Preparation, characterization and catalytic application of phyllosilicate: a review. Catalysis Today, 2020, 339: 3–23

    Article  CAS  Google Scholar 

  14. Lee J H, Cho E B. High hydrothermal stability of mesoporous Ni-phyllosilicate spherical particles. Applied Surface Science, 2022, 590: 153114

    Article  CAS  Google Scholar 

  15. Yang J N, Li Z Y, Xu Y X, Nie S B, Liu Y. Effect of nickel phyllosilicate on the morphological structure, thermal properties and wear resistance of epoxy nanocomposites. Journal of Polymer Research, 2020, 27(9): 274

    Article  CAS  Google Scholar 

  16. Yang J N, Xu Y X, Nie S B, Feng X S, Jiang L. Effect of organic-modified nickel phyllosilicates on the tribological, mechanical and thermal properties of epoxy composites. Journal of Materials Research and Technology, 2021, 14: 692–702

    Article  CAS  Google Scholar 

  17. Yang J N, Feng X S, Nie S B, Xu Y X, Li Z Y. Self-sacrificial templating synthesis of flower-like nickel phyllosilicates and its application as high-performance reinforcements in epoxy nanocomposites. Frontiers of Chemical Science and Engineering, 2022, 16(4): 484–497

    Article  CAS  Google Scholar 

  18. Nie S B, Jin D, Xu Y X, Han C, Dong X, Yang J N. Effect of a flower-like nickel phyllosilicate-containing iron on the thermal stability and flame retardancy of epoxy resin. Journal of Materials Research and Technology, 2020, 9(5): 10189–10197

    Article  CAS  Google Scholar 

  19. Jiang Y X, Wang D G, Pan Z D, Ma H J, Li M, Li J H, Zheng A D, Lv G, Tian Z J. Microemulsion-mediated hydrothermal synthesis of flower-like MoS2 nanomaterials with enhanced catalytic activities for anthracene hydrogenation. Frontiers of Chemical Science and Engineering, 2018, 12(1): 32–42

    Article  CAS  Google Scholar 

  20. Srinivas V, Thakur R N, Jain A K, Saratchandra Babu M. Tribological studies of transmission oil dispersed with molybdenum disulfide and tungsten disulfide nanoparticles. Journal of Tribology, 2017, 139(4): 041301

    Article  Google Scholar 

  21. Cai P, Wang T M, Wang Q H. Effect of several solid lubricants on the mechanical and tribological properties of phenolic resin-based composites. Polymer Composites, 2015, 36(12): 2203–2211

    Article  CAS  Google Scholar 

  22. Wang D, Song L, Zhou K Q, Yu X J, Hu Y, Wang J. Anomalous nano-barrier effects of ultrathin molybdenum disulfide nanosheets for improving the flame retardance of polymer nanocomposites. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(27): 14307–14317

    Article  CAS  Google Scholar 

  23. Yang L, Mukhopadhyay A, Jiao Y C, Yong Q, Chen L, Xing Y J, Hamel J, Zhu H L. Ultralight, highly thermally insulating and fire resistant aerogel by encapsulating cellulose nanofibers with two-dimensional MoS2. Nanoscale, 2017, 9(32): 11452–11462

    Article  CAS  PubMed  Google Scholar 

  24. Sui Y L, Li P H, Dai X Y, Zhang C L. Green self-assembly of h-BN@PDA@MoS2 nanosheets by polydopamine as fire hazard suppression materials. Reactive & Functional Polymers, 2021, 165: 104965

    Article  CAS  Google Scholar 

  25. Zhou K Q, Gao R, Qian X D. Self-assembly of exfoliated molybdenum disulfide (MoS2) nanosheets and layered double hydroxide (LDH): towards reducing fire hazards of epoxy. Journal of Hazardous Materials, 2017, 338: 343–355

    Article  PubMed  Google Scholar 

  26. Zhou K Q, Jiang S H, Bao C L, Song L, Wang B B, Tang G, Hu Y, Gui Z. Preparation of poly (vinyl alcohol) nanocomposites with molybdenum disulfide (MoS2): structural characteristics and markedly enhanced properties. RSC Advances, 2012, 2(31): 11695–11703

    Article  CAS  Google Scholar 

  27. Xu Y X, Nie S X, Dai G L, Yang J N, Dong X, Feng X S. Effect of phosphorus-modified nickel phyllosilicates on the thermal stability, flame retardancy and mechanical property of epoxy composites. Journal of Polymer Research, 2022, 29(1): 10

    Article  CAS  Google Scholar 

  28. Burattin P, Che M, Louis C. Characterization of the Ni(II) phase formed on silica upon deposition-precipitation. Journal of Physical Chemistry B, 1997, 101(36): 7060–7074

    Article  CAS  Google Scholar 

  29. Kermarec M, Carriat J Y, Burattin P, Che M, Decarreau A. FTIR identification of the supported phases produced in the preparation of silica-supported nickel catalysts. Journal of Physical Chemistry, 1994, 98(46): 12008–12017

    Article  Google Scholar 

  30. Kibsgaard J, Chen Z, Reinecke B N, Jaramillo T F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nature Materials, 2012, 11(11): 963–969

    Article  CAS  PubMed  Google Scholar 

  31. Zou B, Qiu S L, Qian Z Y, Wang J W, Zhou Y F, Xu Z M, Yang W H, Xing W Y. Phosphorus/nitrogen-codoped molybdenum disulfide/cobalt borate nanostructures for flame-retardant and tribological applications. ACS Applied Nano Materials, 2021, 4(10): 10495–10504

    Article  CAS  Google Scholar 

  32. Qiu C, Jiang J, Ai L H. When layered nickel-cobalt silicate hydroxide nanosheets meet carbon nanotubes: a synergetic coaxial nanocable structure for enhanced electrocatalytic water oxidation. ACS Applied Materials & Interfaces, 2016, 8(1): 945–951

    Article  CAS  Google Scholar 

  33. Xu D H, Wang S J, Hu J W, Liu Y, Jiang Z M, Zhu P. Enhancing antibacterial and flame-retardant performance of cotton fabric with an iminodiacetic acid-containing N-halamine. Cellulose, 2021, 28(5): 3265–3277

    Article  CAS  Google Scholar 

  34. Xu Y X, Dai G L, Nie S B, Yang J N, Liu S, Zhang H, Dong X. Nickel-based metal-organic framework-derived whisker-shaped nickel phyllosilicate toward efficiently enhanced mechanical, flammable and tribological properties of epoxy nanocomposites. Frontiers of Chemical Science and Engineering, 2022, 16(10): 1493–1504

    Article  CAS  Google Scholar 

  35. Chen X S, Lin X B, Ye W, Xu B Y, Wang D Y. Polyelectrolyte as highly efficient flame retardant to epoxy: synthesis, characterization and mechanism. Polymer Degradation & Stability, 2022, 206: 110181

    Article  CAS  Google Scholar 

  36. Yu C B, Wu T, Yang F H, Wang H, Rao W H, Zhao H B. Interfacial engineering to construct P-loaded hollow nanohybrids for flame-retardant and high-performance epoxy resins. Journal of Colloid and Interface Science, 2022, 628: 851–863

    Article  CAS  PubMed  Google Scholar 

  37. Wang C, Huo S Q, Ye G F, Song P G, Wang H, Liu Z. Liu Z T. A P/Si-containing polyethylenimine curing agent towards transparent, durable fire-safe, mechanically-robust and tough epoxy resins. Chemical Engineering Journal, 2023, 451: 138768

    Article  CAS  Google Scholar 

  38. Rao W H, Tao J, Yang F H, Wu T, Yu C B, Zhao H B. Growth of copper organophosphate nanosheets on graphene oxide to improve fire safety and mechanical strength of epoxy resins. Chemosphere, 2023, 311: 137047

    Article  CAS  PubMed  Google Scholar 

  39. Tao J, Yang F H, Wu T, Shi J J, Zhao H B, Rao W H. Thermal insulation, flame retardancy, smoke suppression, and reinforcement of rigid polyurethane foam enabled by incorporating a P/Cu-hybrid silica aerogel. Chemical Engineering Journal, 2023, 461: 142061

    Article  CAS  Google Scholar 

  40. Yuan J Y, Zhang Z Z, Yang M M, Guo F, Men X H, Liu W M. Surface modification of hybrid-fabric composites with amino silane and polydopamine for enhanced mechanical and tribological behaviors. Tribology International, 2017, 107: 10–17

    Article  CAS  Google Scholar 

  41. Wang Q H, Zhang X R, Pei X Q. Study on the friction and wear behavior of basalt fabric composites filled with graphite and nano-SiO2. Materials & Design, 2010, 31(3): 1403–1409

    Article  CAS  Google Scholar 

  42. Yang J N, Xu Y X, Su C, Nie S B, Li Z Y. Synthesis of hierarchical nanohybrid CNT@Ni-PS and itsapplications in enhancing thetribological, curing and thermalproperties of epoxy nanocomposites. Frontiers of Chemical Science and Engineering, 2021, 15(5): 1281–1295

    Article  CAS  Google Scholar 

  43. Dasari A, Yu Z Z, Mai Y W. Fundamental aspects and recent progress on wear/scratch damage in polymer nanocomposites. Materials Science and Engineering R Reports, 2009, 63(2): 31–80

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Outstanding Youth Scientific Research Project in Anhui Province (Grant No. 2022AH020055), Key Research and Development Projects in Anhui Province (Grant No. 2022i01020016), the National Natural Science Foundation of China (Grant No. 52074011), and the University Synergy innovation Program of Anhui Province (Grant No. GXXT-2022-018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shibin Nie or Jinian Yang.

Ethics declarations

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, S., He, W., Xu, Y. et al. Molybdenum disulfide@nickel phyllosilicate hybrid for improving the flame retardancy and wear resistance of epoxy composites. Front. Chem. Sci. Eng. 17, 2114–2126 (2023). https://doi.org/10.1007/s11705-023-2357-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-023-2357-1

Keywords

Navigation