Skip to main content
Log in

Understanding passenger route choice behavior under the influence of detailed route information based on smart card data

  • Published:
Transportation Aims and scope Submit manuscript

Abstract

Most previous studies explored the route choice behavior of metro passengers using stated preference (SP) survey data, but the SP data are inevitably subject to endogenous and selection bias. In contrast, automated fare collection (AFC) data record travel information for nearly all passengers at boarding and alighting stations. However, due to the seamless transfer in urban rail transit, it becomes challenging to track the actual routes of passengers accurately using AFC data. Fortunately, based on a data-driven method, the chosen route and detailed travel information (e.g., segmented travel time, train load status) can be inferred with AFC data. To fill the research gaps, this paper delves into the route choice mechanism by considering the effect of detailed route information, taking Nanjing Metro, China as a case study. A Conditional Multinomial Logit model is employed to examine the effect of determinants on route choice behavior for metro passengers. The results show that the route choice model considering dynamic segmented travel time and train load status has better fit performance than the benchmark models. The sensitivity of the walking time is found to be similar to that of in-vehicle time for metro passengers, but a stronger distaste for waiting time or queuing time is observed. Besides, the crowding-related attributes are negative for route choice, but Nanjing Metro passengers present a higher tolerance for crowding compared with passengers in developed countries. These findings provide an accurate and comprehensive insight into the route choice behavior of metro passengers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson, M.K., Nielsen, O.A., Prato, C.G.: Multimodal route choice models of public transport passengers in the greater Copenhagen area. EURO J. Transp. Logist. 6(3), 221–245 (2017). https://doi.org/10.1007/s13676-014-0063-3

    Article  Google Scholar 

  • Batarce, M., Muñoz, J., Ortúzar, J.D.D., Raveau, S., Mojica, C., Ríos, R.: Use of mixed stated and revealed preference data for crowding valuation on public transport in santiago, chile. Transp. Res. Rec. 2535, 73–78 (2015)

    Article  Google Scholar 

  • Batty, M.: Big data, smart cities and city planning. Dialogues Hum. Geogr. 3(3), 274–279 (2013). https://doi.org/10.1177/2043820613513390

    Article  Google Scholar 

  • Buckell, J., White, J.S., Shang, C.: Can incentive-compatibility reduce hypothetical bias in smokers’ experimental choice behavior? A randomized discrete choice experiment. J. Choice Model. 37, 100255 (2020). https://doi.org/10.1016/j.jocm.2020.100255

    Article  Google Scholar 

  • Cheng, Y., Ye, X., Fujiyama, T.: How does interchange affect passengers’ route choices in urban rail transit?—A case study of the shanghai metro. Transp. Lett. 14(4), 416–426 (2022). https://doi.org/10.1080/19427867.2021.1883803

    Article  Google Scholar 

  • Dong, C., Li, Y., Long, J., Chen, Y.: Public willingness to pay for customized bus based on conditional logit model. J. Hefei Univ. Technol. (Nat. Sci.) 45(08), 1100–1106+1129 (2022)

  • Douglas, N., George, K.: Estimating the passenger cost of train overcrowding. Proceedings of 29th Australian Transport Research Forum, 1–8 (2006)

  • Fayyaz, M., Bliemer, M.C.J., Beck, M.J., Hess, S., van Lint, J.W.C.: Stated choices and simulated experiences: differences in the value of travel time and reliability. Transp. Res. Part C Emerg. Technol. 128, 103145 (2021). https://doi.org/10.1016/j.trc.2021.103145

    Article  Google Scholar 

  • Garikapati, V.M., You, D., Pendyala, R.M., Vovsha, P.S., Livshits, V., Jeon, K.: Multiple discrete-continuous model of activity participation and time allocation for home-based work tours. Transp. Res. Rec. 2429(1), 90–98 (2014). https://doi.org/10.3141/2429-10

    Article  Google Scholar 

  • Hak Lee, E., Kim, K., Kho, S.-Y., Kim, D.-K., Cho, S.-H.: Estimating express train preference of urban railway passengers based on extreme gradient boosting (xgboost) using smart card data. Transp. Res. Rec. 2675(11), 64–76 (2021). https://doi.org/10.1177/03611981211013349

    Article  Google Scholar 

  • Hawas, Y.: Development and calibration of route choice utility models: factorial experimental design approach. J. Transp. Eng. ASCE 130, 159–170 (2004)

    Article  Google Scholar 

  • Hong, S.-P., Min, Y.-H., Park, M.-J., Kim, K.M., Oh, S.M.: Precise estimation of connections of metro passengers from smart card data. Transportation 43(5), 749–769 (2016)

    Article  Google Scholar 

  • Huan, N., Yao, E., Zhang, J.: Demand-responsive passenger flow control strategies for metro networks considering service fairness and passengers’ behavioural responses. Transp. Res. Part C Emerg. Technol. 131, 103335 (2021). https://doi.org/10.1016/j.trc.2021.103335

    Article  Google Scholar 

  • Jánošíková, L., Slavík, J., Koháni, M.: Estimation of a route choice model for urban public transport using smart card data. Transp. Plan. Technol. 37, 638–648 (2014)

    Article  Google Scholar 

  • Kato, H., Kaneko, Y., Inoue, M.: Comparative analysis of transit assignment: evidence from urban railway system in the Tokyo metropolitan area. Transportation 37(5), 775–799 (2010)

    Article  Google Scholar 

  • Kim, K.M., Hong, S.-P., Ko, S.-J., Kim, D.: Does crowding affect the path choice of metro passengers? Transp. Res. Part A Policy Pract. 77, 292–304 (2015). https://doi.org/10.1016/j.tra.2015.04.023

    Article  Google Scholar 

  • Kim, K.M., Hong, S.-P., Ko, S.-J., Min, J.H.: Predicting express train choice of metro passengers from smart card data. Transp. Res. Rec. 2544(1), 63–70 (2016). https://doi.org/10.3141/2544-08

    Article  Google Scholar 

  • Kim, I., Kim, H.-C., Seo, D.-J., Kim, J.I.: Calibration of a transit route choice model using revealed population data of smartcard in a multimodal transit network. Transportation 47(5), 2179–2202 (2020)

    Article  Google Scholar 

  • Krčál, O., Peer, S., Staněk, R., Karlínová, B.: Real consequences matter: why hypothetical biases in the valuation of time persist even in controlled lab experiments. Econ. Transp. 20, 100138 (2019). https://doi.org/10.1016/j.ecotra.2019.100138

    Article  Google Scholar 

  • Kurauchi, F., Schmöcker, J.-D., Fonzone, A., Hemdan, S., Shimamoto, H., Bell, M.: Estimating weights of times and transfers for hyperpath travelers. Transp. Res. Rec. 2284, 89–99 (2012)

    Article  Google Scholar 

  • Kusakabe, T., Asakura, Y.: Behavioural data mining of transit smart card data: a data fusion approach. Transp. Res. Part C Emerg. Technol. 46, 179–191 (2014)

    Article  Google Scholar 

  • Kusakabe, T., Iryo, T., Asakura, Y.: Estimation method for railway passengers’ train choice behavior with smart card transaction data. Transportation 37(5), 731–749 (2010)

    Article  Google Scholar 

  • Lee, E.H., Kim, K., Kho, S.-Y., Kim, D.-K., Cho, S.-H.: Exploring for route preferences of subway passengers using smart card and train log data. J. Adv. Transp. 2022, 6657486 (2022). https://doi.org/10.1155/2022/6657486

    Article  Google Scholar 

  • Liu, Y., Ji, Y., Shi, Z., He, B., Liu, Q.: Investigating the effect of the spatial relationship between home, workplace and school on parental chauffeurs’ daily travel mode choice. Transp. Policy 69, 78–87 (2018). https://doi.org/10.1016/j.tranpol.2018.06.004

    Article  Google Scholar 

  • Liu, Y., Feng, T., Shi, Z., He, M.: Understanding the route choice behaviour of metro-bikeshare users. Transp. Res. Part A Policy Pract. 166, 460–475 (2022). https://doi.org/10.1016/j.tra.2022.11.006

    Article  Google Scholar 

  • Luan, X., Corman, F.: Passenger-oriented traffic control for rail networks: an optimization model considering crowding effects on passenger choices and train operations. Transp. Res. Part B Methodol. 158, 239–272 (2022). https://doi.org/10.1016/j.trb.2022.02.008

    Article  Google Scholar 

  • Ma, X., Liu, C., Wen, H., Wang, Y., Wu, Y.-J.: Understanding commuting patterns using transit smart card data. J. Transp. Geogr. 58, 135–145 (2017). https://doi.org/10.1016/j.jtrangeo.2016.12.001

    Article  Google Scholar 

  • McFadden, D.: Conditional logit analysis of qualitative choice behavior. In: Zarembka, P. (ed.) Frontiers in Econometrics, pp. 105–142. Academic Press, Cambridge (1974)

    Google Scholar 

  • Okubo, T., Kitano, N., Morimoto, A.: A transportation choice model on the commuter railroads using inverse reinforcement learning. Asian Transp. Stud. 8, 100072 (2022). https://doi.org/10.1016/j.eastsj.2022.100072

    Article  Google Scholar 

  • Peftitsi, S., Jenelius, E., Cats, O.: Determinants of passengers’ metro car choice revealed through automated data sources: a stockholm case study. Transportmetrica A Transp. Sci. 16(3), 529–549 (2020)

    Article  Google Scholar 

  • Pelletier, M.-P., Trépanier, M., Morency, C.: Smart card data use in public transit: a literature review. Transp. Res. Part C Emerg. Technol. 19(4), 557–568 (2011). https://doi.org/10.1016/j.trc.2010.12.003

    Article  Google Scholar 

  • Rahbar, M., Hickman, M., Mesbah, M., Tavassoli, A.: Calibrating a bayesian transit assignment model using smart card data. IEEE Trans. Intell. Transp. Syst. 20(4), 1574–1583 (2019). https://doi.org/10.1109/TITS.2018.2852726

    Article  Google Scholar 

  • Raveau, S., Muñoz, J.C., de Grange, L.: A topological route choice model for metro. Transp. Res. Part A Policy Pract. 45(2), 138–147 (2011). https://doi.org/10.1016/j.tra.2010.12.004

    Article  Google Scholar 

  • Raveau, S., Guo, Z., Muñoz, J.C., Wilson, N.H.M.: A behavioural comparison of route choice on metro networks: time, transfers, crowding, topology and socio-demographics. Transp. Res. Part A Policy Pract. 66, 185–195 (2014). https://doi.org/10.1016/j.tra.2014.05.010

    Article  Google Scholar 

  • Shakeel, K., Rashidi, T.H., Waller, T.S.: Choice set formation behavior: joint mode and route choice selection model. Transp. Res. Rec. 2563(1), 96–104 (2016). https://doi.org/10.3141/2563-14

    Article  Google Scholar 

  • Shi, Z.: Study on the evolution of passenger flow distribution in urban rail transit network. Southeast University (2020)

  • Shin, H., Kim, D.-K., Kho, S.-Y., Cho, S.-H.: Valuation of metro crowding considering heterogeneity of route choice behaviors. Transp. Res. Rec. 2675(2), 162–173 (2021). https://doi.org/10.1177/0361198120948862

    Article  Google Scholar 

  • Su, G., Si, B., Zhao, F., Li, H.: Data-driven method for passenger path choice inference in congested subway network. Complexity 2022, 5451017 (2022a). https://doi.org/10.1155/2022/5451017

    Article  Google Scholar 

  • Su, G., Si, B., Zhi, K., Li, H.: A calculation method of passenger flow distribution in large-scale subway network based on passenger–train matching probability. Entropy 24, 1026 (2022b)

    Article  Google Scholar 

  • Sun, L., Jin, J.G.: Modeling temporal flow assignment in metro networks using smart card data. In: Paper Presented at the 2015 IEEE 18th International Conference on Intelligent Transportation Systems (2015)

  • Sun, L., Lee, D.-H., Erath, A., Huang, X.: Using smart card data to extract passenger's spatio-temporal density and train's trajectory of mrt system. In: Paper presented at the Proceedings of the ACM SIGKDD International Workshop on Urban Computing, Beijing, China (2012)

  • Sun, L., Lu, Y., Jin, J.G., Lee, D.-H., Axhausen, K.W.: An integrated bayesian approach for passenger flow assignment in metro networks. Transp. Res. Part C Emerg. Technol. 52, 116–131 (2015). https://doi.org/10.1016/j.trc.2015.01.001

    Article  Google Scholar 

  • Tamim Kashifi, M., Jamal, A., Samim Kashefi, M., Almoshaogeh, M., Masiur Rahman, S.: Predicting the travel mode choice with interpretable machine learning techniques: a comparative study. Travel Behav. Soc. 29, 279–296 (2022). https://doi.org/10.1016/j.tbs.2022.07.003

    Article  Google Scholar 

  • Tao, S., Rohde, D., Corcoran, J.: Examining the spatial–temporal dynamics of bus passenger travel behaviour using smart card data and the flow-comap. J. Transp. Geogr. 41, 21–36 (2014). https://doi.org/10.1016/j.jtrangeo.2014.08.006

    Article  Google Scholar 

  • Tirachini, A., Hensher, D.A., Rose, J.M.: Crowding in public transport systems: effects on users, operation and implications for the estimation of demand. Transp. Res. Part A Policy Pract. 53, 36–52 (2013). https://doi.org/10.1016/j.tra.2013.06.005

    Article  Google Scholar 

  • Tirachini, A., Sun, L., Erath, A., Chakirov, A.: Valuation of sitting and standing in metro trains using revealed preferences. Transp. Policy 47, 94–104 (2016). https://doi.org/10.1016/j.tranpol.2015.12.004

    Article  Google Scholar 

  • Tirachini, A., Hurtubia, R., Dekker, T., Daziano, R.A.: Estimation of crowding discomfort in public transport: results from Santiago de Chile. Transp. Res. Part A Policy Pract. 103, 311–326 (2017). https://doi.org/10.1016/j.tra.2017.06.008

    Article  Google Scholar 

  • Tomhave, B.J., Khani, A.: Refined choice set generation and the investigation of multi-criteria transit route choice behavior. Transp. Res. Part A Policy Pract. 155, 484–500 (2022)

    Article  Google Scholar 

  • Wardman, M., Whelan, G.: Twenty years of rail crowding valuation studies: evidence and lessons from British experience. Transp. Rev. 31, 379–398 (2011)

    Article  Google Scholar 

  • Wardman, M. R., Hine, J., Stradling, S. G.: Interchange and travel choice - volumes 1 and 2. Scottish Executive Central Research Unit, Edinburgh, Scotland (2001)

  • Weng, J., Tu, Q., Yuan, R., Lin, P., Chen, Z.: Modeling mode choice behaviors for public transport commuters in Beijing. J. Urban Plan. Dev. 144(3), 05018013 (2018). https://doi.org/10.1061/(ASCE)UP.1943-5444.0000459

    Article  Google Scholar 

  • Wu, J., Qu, Y., Sun, H., Yin, H., Yan, X., Zhao, J.: Data-driven model for passenger route choice in urban metro network. Phys. A 524, 787–798 (2019). https://doi.org/10.1016/j.physa.2019.04.231

    Article  Google Scholar 

  • Xu, X., Xie, L., Li, H., Qin, L.: Learning the route choice behavior of subway passengers from AFC data. Expert Syst. Appl. 95, 324–332 (2018). https://doi.org/10.1016/j.eswa.2017.11.043

    Article  Google Scholar 

  • Yap, M., Cats, O., van Arem, B.: Crowding valuation in urban tram and bus transportation based on smart card data. Transportmetrica A Transp. Sci. 16(1), 23–42 (2020)

    Article  Google Scholar 

  • Ye, X., Garikapati, V.M., You, D., Pendyala, R.M.: A practical method to test the validity of the standard Gumbel distribution in logit-based multinomial choice models of travel behavior. Transp. Res. Part B Methodol. 106, 173–192 (2017). https://doi.org/10.1016/j.trb.2017.10.009

    Article  Google Scholar 

  • You, D., Garikapati, V.M., Pendyala, R.M., Bhat, C.R., Dubey, S., Jeon, K., et al.: Development of vehicle fleet composition model system for implementation in activity-based travel model. Transp. Res. Rec. 2430(1), 145–154 (2014). https://doi.org/10.3141/2430-15

    Article  Google Scholar 

  • Yu, C., Li, H., Xu, X., Liu, J.: Data-driven approach for solving the route choice problem with traveling backward behavior in congested metro systems. Transp. Res. E Logist. Transp. Rev. 142, 102037 (2020). https://doi.org/10.1016/j.tre.2020.102037

    Article  Google Scholar 

  • Zhang, Y., Yao, E., Zhang, J., Zheng, K.: Estimating metro passengers’ path choices by combining self-reported revealed preference and smart card data. Transp. Res. Part C Emerg. Technol. 92, 76–89 (2018). https://doi.org/10.1016/j.trc.2018.04.019

    Article  Google Scholar 

  • Zhao, J., Zhang, F., Tu, L., Xu, C.-Z., Shen, D., Tian, C., et al.: Estimation of passenger route choice pattern using smart card data for complex metro systems. IEEE Trans. Intell. Transp. Syst. 18, 790–801 (2017)

    Article  Google Scholar 

  • Zhou, W., Wang, W., Zhao, D.: Passenger flow forecasting in metro transfer station based on the combination of singular spectrum analysis and adaboost-weighted extreme learning machine. Sensors 20, 3555 (2020)

    Article  Google Scholar 

  • Zhou, H., Qi, J., Yang, L., Shi, J., Mo, P.: Joint optimization of train scheduling and rolling stock circulation planning with passenger flow control on tidal overcrowded metro lines. Transp. Res. Part C Emerg. Technol. 140, 103708 (2022). https://doi.org/10.1016/j.trc.2022.103708

    Article  Google Scholar 

  • Zhu, W., Wang, W., Huang, Z.: Estimating train choices of rail transit passengers with real timetable and automatic fare collection data. J. Adv. Transp. 2017, 1–12 (2017). https://doi.org/10.1155/2017/5824051

    Article  Google Scholar 

  • Zhu, Y., Koutsopoulos, H.N., Wilson, N.H.M.: Passenger itinerary inference model for congested urban rail networks. Transp. Res. Part C Emerg. Technol. 123, 102896 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 52102378, 52202381) and Yunnan Fundamental Research Projects (Grant Nos. 202201BE070001-052, 202201AU070148, 202201AU070109). All the authors would like to express our sincere gratitude to Prof. Paul Schonfeld for his editing of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design: ZBS, YL. Data collection and analysis: ZBS, WQP and MWH. Modeling: ZBS, WQP and YL. Writing and editing: ZBS, WQP and YL.

Corresponding author

Correspondence to Yang Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Z., Pan, W., He, M. et al. Understanding passenger route choice behavior under the influence of detailed route information based on smart card data. Transportation (2023). https://doi.org/10.1007/s11116-023-10432-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11116-023-10432-x

Keywords

Navigation