Skip to main content
Log in

Low-Progress Math in a High-Performing System: The Role of Math Anxiety in Singapore’s Elementary Learners

  • Regular Article
  • Published:
The Asia-Pacific Education Researcher Aims and scope Submit manuscript

Abstract

Math anxiety negatively relates to math performance. This negative relationship may be exacerbated in low-progress math learners. However, there are limited studies on math anxiety among low-progress learners in a paradoxically high-performing education system like Singapore. To fill this research gap, this research analyzed the anxiety profiles of 151 students who were in the math learning support intervention program administered by the Ministry of Education, Singapore (MOE). We examined the complex relationship centered in math anxiety with relevant variables such as demographic characteristics, working memory, and math performance. The results indicated that (1) math anxiety only vary significantly between children with very low Early Numeracy Indicator (ENI) and high ENI levels; (2) a negative relationship between math anxiety and math performance exists; (3) there was no significant interaction between math anxiety and working memory; (4) a further examination on moderating effect found that only children who have been identified as being at risk for developmental dyscalculia and those with average or high working memory performed poorer in math at higher levels of math anxiety. Limitations and future directions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available as they contain information that could compromise the privacy of research participants

References

  • Ahmed, W. (2018). Developmental trajectories of math anxiety during adolescence: Associations with STEM career choice. Journal of Adolescence, 67, 158–166.

    Article  Google Scholar 

  • American Psychiatric Association. (2003). Diagnostic and statistical manual of mental disorders (5th ed.). https://doi.org/10.1176/appi.books.9780890425596

  • American Psychiatric Association. (2013). Specific learning disorders. In Diagnostic and statistical manual of mental disorders (5th ed.). https://doi.org/10.1176/appi.books.9780890425596

  • Ashcraft, M. H. (2002). Math anxiety: Personal, educational, and cognitive consequences. Current Directions in Psychological Science, 11(5), 181–185. https://doi.org/10.1111/1467-8721.00196

    Article  Google Scholar 

  • Ashcraft, M. H., & Kirk, E. P. (2001). The relationships among working memory, math anxiety, and performance. Journal of Experimental Psychology: General, 130(2), 224–237. https://doi.org/10.1037/0096-3445.130.2.224

    Article  Google Scholar 

  • Ashcraft, M. H., & Krause, J. A. (2007). Working memory, math performance, and math anxiety. Psychonomic Bulletin & Review, 14(2), 243–248. https://doi.org/10.3758/BF03194059

    Article  Google Scholar 

  • Ashkenazi, S., Rosenberg-Lee, M., Metcalfe, A. W., Swigart, A. G., & Menon, V. (2013). Visuo–spatial working memory is an important source of domain-general vulnerability in the development of arithmetic cognition. Neuropsychologia, 51(11), 2305–2317.

    Article  Google Scholar 

  • Baddeley, A. D., & Hitch, G. (1974). Working memory. The Psychology of Learning and Motivation, 8, 47–89.

    Article  Google Scholar 

  • Beilock, S. L., & Carr, T. H. (2005). When high-powered people fail: Working memory and “choking under pressure” in math. Psychological Science, 16(2), 101–105. https://doi.org/10.1111/j.0956-7976.2005.00789.x

    Article  Google Scholar 

  • Bull, R., Espy, K. A., & Wiebe, S. A. (2008). Short-term memory, working memory, and executive functioning in preschoolers: Longitudinal predictors of mathematical achievement at age 7 years. Developmental Neuropsychology, 33(3), 205–228. https://doi.org/10.1080/87565640801982312

    Article  Google Scholar 

  • Butterworth, B. (2003). Dyscalculia screener [Data set]. American Psychological Association. https://doi.org/10.1037/t05204-000

  • Booth, J. L., & Siegler, R. S. (2008). Numerical magnitude representations influence arithmetic learning. Child development, 79(4), 1016–1031. https://doi.org/10.1111/j.1467-8624.2008.01173.x

    Article  Google Scholar 

  • Bynner, J. (2004). Literacy, numeracy and employability: Evidence form the British birth cohort studies. Literacy and Numeracy Studies, 13(1), 31–48.

    Google Scholar 

  • Cargnelutti, E., Tomasetto, C., & Passolunghi, M. C. (2017). How is anxiety related to math performance in young students? A longitudinal study of Grade 2 to Grade 3 children. Cognition and Emotion, 31(4), 755–764. https://doi.org/10.1080/02699931.2016.1147421

    Article  Google Scholar 

  • Cheema, J. R., & Sheridan, K. (2015). Time spent on homework, mathematics anxiety and mathematics achievement: Evidence from a US sample. Issues in Educational Research, 25(3), 246–259.

    Google Scholar 

  • Devine, A., Hill, F., Carey, E., & Szűcs, D. (2018). Cognitive and emotional math problems largely dissociate: Prevalence of developmental dyscalculia and mathematics anxiety. Journal of Educational Psychology, 110(3), 431.

    Article  Google Scholar 

  • Dowker, A. (2005). Individual differences in arithmetic: Implications for psychology, neuroscience and education. Psychology Press.

    Book  Google Scholar 

  • Dowker, A., Sarkar, A., & Looi, C. Y. (2016). Mathematics anxiety: What have we learned in 60 years? Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2016.00508

    Article  Google Scholar 

  • Eysenck, M. W., Derakshan, N., Santos, R., & Calvo, M. G. (2007). Anxiety and cognitive performance: Attentional control theory. Emotion, 7, 336–353. https://doi.org/10.1037/1528-3542.7.2.336

    Article  Google Scholar 

  • Foley, A. E., Herts, J. B., Borgonovi, F., Guerriero, S., Levine, S. C., & Beilock, S. L. (2017). The math anxiety-performance link: A global phenomenon. Current Directions in Psychological Science, 26(1), 52–58. https://doi.org/10.1177/0963721416672463

    Article  Google Scholar 

  • Fuchs, L. S., Fuchs, D., Compton, D. L., Powell, S. R., Seethaler, P. M., Capizzi, A. M., Schatschneider, C., & Fletcher, J. M. (2006). The cognitive correlates of third-grade skill in arithmetic, algorithmic computation, and arithmetic word problems. Journal of Educational Psychology, 98(1), 29–43. https://doi.org/10.1037/0022-0663.98.1.29

    Article  Google Scholar 

  • Geary, D. C., Bailey, D. H., Littlefield, A., Wood, P., Hoard, M. K., & Nugent, L. (2009). First-grade predictors of mathematical learning disability: A latent class trajectory analysis. Cognitive Development, 24(4), 411–429. https://doi.org/10.1016/j.cogdev.2009.10.001

    Article  Google Scholar 

  • Gray, S. A., & Reeve, R. A. (2016). Number-specific and general cognitive markers of preschoolers’ math ability profiles. Journal of Experimental Child Psychology, 147, 1–21. https://doi.org/10.1016/j.jecp.2016.02.004

    Article  Google Scholar 

  • Harari, R. R., Vukovic, R. K., & Bailey, S. P. (2013). Mathematics anxiety in young children: An exploratory study. The Journal of Experimental Education, 81(4), 538–555. https://doi.org/10.1080/00220973.2012.727888

    Article  Google Scholar 

  • Hart, S. A., & Ganley, C. M. (2019). The nature of math anxiety in adults: Prevalence and correlates. Journal of Numerical Cognition, 5(2), 122.

    Article  Google Scholar 

  • Hembree, R. (1990). The nature, effects, and relief of mathematics anxiety. Journal for Research in Mathematics Education, 21(1), 33–46. https://doi.org/10.2307/749455

    Article  Google Scholar 

  • Henry, D. L., Baltes, B., & Nistor, N. (2014). Examining the relationship between math scores and English language proficiency. Journal of Educational Research and Practice, 4(1), 2.

    Google Scholar 

  • Honaker, J., King, G., & Blackwell, M. (2019). Amelia: A program for missing data (1.7.6) [Computer software]. https://CRAN.R-project.org/package=Amelia

  • Jamaludin, A., & Hung, D. (2019). Translational specifications of neural-informed game-based interventions for mathematical cognitive development of low-progress learners: A science of learning approach. OER Knowledge Bites, 10, 6–7.

    Google Scholar 

  • Justicia-Galiano, M. J., Martín-Puga, M. E., Linares, R., & Pelegrina, S. (2017). Math anxiety and math performance in children: The mediating roles of working memory and math self-concept. The British journal of educational psychology, 87(4), 573–589. https://doi.org/10.1111/bjep.12165

    Article  Google Scholar 

  • Kellogg, J. S., Hopko, D. R., & Ashcraft, M. H. (1999). The effects of time pressure on arithmetic performance. Journal of Anxiety Disorders, 13(6), 591–600. https://doi.org/10.1016/S0887-6185(99)00025-0

    Article  Google Scholar 

  • Krinzinger, H., Kaufmann, L., & Willmes, K. (2009). Math anxiety and math ability in early primary school years. Journal of Psychoeducational Assessment, 27(3), 206–225. https://doi.org/10.1177/0734282908330583

    Article  Google Scholar 

  • Langsrud, Ø. (2003). ANOVA for unbalanced data: Use type II instead of type III sums of squares. Statistics and Computing, 13(2), 163–167. https://doi.org/10.1023/A:1023260610025

    Article  Google Scholar 

  • Lee Swanson, H., Howard, C. B., & Saez, L. (2006). Do different components of working memory underlie different subgroups of reading disabilities? Journal of Learning Disabilities, 39(3), 252–269.

    Article  Google Scholar 

  • Lenth, R., Buerkner, P., Herve, M., Love, J., Riebl, H., & Singmann, H. (2020). emmeans: Estimated marginal means, aka least-squares means (1.5.0) [Computer software]. https://CRAN.R-project.org/package=emmeans

  • Little, R. J. A. (1988). A test of missing completely at random for multivariate data with missing values. Journal of the American Statistical Association, 83(404), 1198–1202. https://doi.org/10.2307/2290157

    Article  Google Scholar 

  • Lusardi, A., & Mitchell, O. S. (2011). Financial literacy and retirement planning in the United States (No. 0898-2937). National Bureau of Economic Research.

  • Maloney, E. A., Ramirez, G., Gunderson, E. A., Levine, S. C., & Beilock, S. L. (2015). Intergenerational effects of parents’ math anxiety on children’s math achievement and anxiety. Psychological Science, 26(9), 1480–1488. https://doi.org/10.1177/0956797615592630

    Article  Google Scholar 

  • Mammarella, I. C., Hill, F., Devine, A., Caviola, S., & Szűcs, D. (2015). Math anxiety and developmental dyscalculia: A study on working memory processes. Journal of Clinical and Experimental Neuropsychology, 37(8), 878–887.

    Article  Google Scholar 

  • Mattarella-Micke, A., Mateo, J., Kozak, M. N., Foster, K., & Beilock, S. L. (2011). Choke or thrive? The relation between salivary cortisol and math performance depends on individual differences in working memory and math-anxiety. Emotion, 11(4), 1000–1005. https://doi.org/10.1037/a0023224

    Article  Google Scholar 

  • McClelland, M. M., Cameron, C. E., Connor, C. M., Farris, C. L., Jewkes, A. M., & Morrison, F. J. (2007). Links between behavioral regulation and preschoolers’ literacy, vocabulary, and math skills. Developmental Psychology, 43(4), 947–959. https://doi.org/10.1037/0012-1649.43.4.947

    Article  Google Scholar 

  • Menon, V. (2016). Working memory in children’s math learning and its disruption in dyscalculia. Current Opinion in Behavioral Sciences, 10, 125–132.

    Article  Google Scholar 

  • Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention and control: A network model of insula function. Brain Structure & Function, 214(5–6), 655–667. https://doi.org/10.1007/s00429-010-0262-0

    Article  Google Scholar 

  • Mutlu, Y. (2019). Math anxiety in students with and without math learning difficulties. International Electronic Journal of Elementary Education, 11(5), 471–475.

    Article  Google Scholar 

  • Namkung, J. M., Peng, P., & Lin, X. (2019). The relation between mathematics anxiety and mathematics performance among school-aged students: A meta-analysis. Review of Educational Research, 89(3), 459–496. https://doi.org/10.3102/0034654319843494

    Article  Google Scholar 

  • National Archives of Singapore. (2008). Enhanced learning support programme has benefited pupils. https://www.nas.gov.sg/archivesonline/data/pdfdoc/20080129995.pdf

  • Ng, J. D., Liew, E., Menon, L., Ling, L. P., & Wang, A. (2007). Learning support for mathematics (lsm): using the 4-pronged intervention approach. In Proceedings of the Redesigning Pedagogy: Culture, Knowledge and Understanding Conference [Symposium]. Singapore.

  • NIE Office of Education Research. (2022). iMAGINE: Math Game-based Interventions in Neural-informed education. Retrieved January 15, 2022 from iMAGINE: Math Game-based Interventions in Neural-informed education | SingTeach | Education Research for Teachers | Research within Reach (nie.edu.sg)

  • Passolunghi, M. C., & Siegel, L. S. (2004). Working memory and access to numerical information in children with disability in mathematics. Journal of Experimental Child Psychology, 88(4), 348–367. https://doi.org/10.1016/j.jecp.2004.04.002

    Article  Google Scholar 

  • Peng, P., Namkung, J., Barnes, M., & Sun, C. (2016). A meta-analysis of mathematics and working memory: Moderating effects of working memory domain, type of mathematics skill, and sample characteristics. Journal of Educational Psychology, 108(4), 455–473. https://doi.org/10.1037/edu0000079

    Article  Google Scholar 

  • Pletzer, B., Kronbichler, M., Nuerk, H. C., & Kerschbaum, H. H. (2015). Mathematics anxiety reduces default mode network deactivation in response to numerical tasks. Frontiers in Human Neuroscience, 9, 202. https://doi.org/10.3389/fnhum.2015.00202

    Article  Google Scholar 

  • Psychological Corporation. (2009). WIAT III: Wechsler Individual Achievement Test. Psychological Corp.

  • R Core Team. (2020). R: A language and environment for statistical computing (4.0.2). R Foundation for Statistical Computing. https://www.r-project.org/

  • Raghubar, K. P., Barnes, M. A., & Hecht, S. A. (2010). Working memory and mathematics: A review of developmental, individual difference, and cognitive approaches. Learning and Individual Differences, 20(2), 110–122.

    Article  Google Scholar 

  • Ramirez, G., Gunderson, E. A., Levine, S. C., & Beilock, S. L. (2013). Math anxiety, working memory, and math achievement in early elementary school. Journal of Cognition and Development, 14(2), 187–202. https://doi.org/10.1080/15248372.2012.664593

    Article  Google Scholar 

  • Ramirez, G., Chang, H., Maloney, E. A., Levine, S. C., & Beilock, S. L. (2016). On the relationship between math anxiety and math achievement in early elementary school: The role of problem solving strategies. Journal of Experimental Child Psychology, 141, 83–100. https://doi.org/10.1016/j.jecp.2015.07.014

    Article  Google Scholar 

  • Ramirez, G., Shaw, S. T., & Maloney, E. A. (2018). Math anxiety: Past research, promising interventions, and a new interpretation framework. Educational Psychologist, 53(3), 145–164. https://doi.org/10.1080/00461520.2018.1447384

    Article  Google Scholar 

  • Reeve, R., Reynolds, F., Humberstone, J., & Butterworth, B. (2012). Stability and change in markers of core numerical competencies. Journal of Experimental Psychology: General, 141(4), 649–666. https://doi.org/10.1037/a0027520

    Article  Google Scholar 

  • Richardson, F. C., & Suinn, R. M. (1972). The mathematics anxiety rating scale: Psychometric data. Journal of Counseling Psychology, 19(6), 551–554. https://doi.org/10.1037/h0033456

    Article  Google Scholar 

  • Rotzer, S., Loenneker, T., Kucian, K., Martin, E., Klaver, P., & Von Aster, M. (2009). Dysfunctional neural network of spatial working memory contributes to developmental dyscalculia. Neuropsychologia, 47(13), 2859–2865.

    Article  Google Scholar 

  • Rubinsten, O., & Tannock, R. (2010). Mathematics anxiety in children with developmental dyscalculia. Behavioral and Brain Functions, 6(1), 46–46. https://doi.org/10.1186/1744-9081-6-46

    Article  Google Scholar 

  • Smedt, B. D., Taylor, J., Archibald, L., & Ansari, D. (2010). How is phonological processing related to individual differences in children’s arithmetic skills? Developmental Science, 13(3), 508–520. https://doi.org/10.1111/j.1467-7687.2009.00897.x

    Article  Google Scholar 

  • Sorvo, R., Koponen, T., Viholainen, H., Aro, T., Räikkönen, E., Peura, P., Tolvanen, A., & Aro, M. (2019). Development of math anxiety and its longitudinal relationships with arithmetic achievement among primary school children. Learning and Individual Differences, 69, 173–181. https://doi.org/10.1016/j.lindif.2018.12.005

    Article  Google Scholar 

  • Suárez-Pellicioni, M., Núñez-Peña, M. I., & Colomé, À. (2016). Math anxiety: A review of its cognitive consequences, psychophysiological correlates, and brain bases. Cognitive, Affective & Behavioral Neuroscience, 16(1), 3–22. https://doi.org/10.3758/s13415-015-0370-7

    Article  Google Scholar 

  • Swanson, H. L., & Beebe-Frankenberger, M. (2004). The relationship between working memory and mathematical problem solving in children at risk and not at risk for serious math difficulties. Journal of Educational Psychology, 96(3), 471–491. https://doi.org/10.1037/0022-0663.96.3.471

    Article  Google Scholar 

  • Szczygiel, M. (2020). Gender, general anxiety, math anxiety and math achievement in early school-age children. Issues in Educational Research, 30(3), 1126–1142.

    Google Scholar 

  • Szczygieł, M. (2019). How to measure math anxiety in young children? Psychometric properties of the modified Abbreviated Math Anxiety Scale for Elementary Children (mAMAS-E). Polish Psychological Bulletin, 50(4), 303–315. https://doi.org/10.24425/ppb.2019.131003

    Article  Google Scholar 

  • Van Mier, H. I., Schleepen, T. M., & Van den Berg, F. C. (2019). Gender differences regarding the impact of math anxiety on arithmetic performance in second and fourth graders. Frontiers in Psychology, 2690.

  • Vetter, P., Butterworth, B., & Bahrami, B. (2011). A candidate for the attentional bottleneck: Set-size specific modulation of the right TPJ during attentive enumeration. Journal of Cognitive Neuroscience, 23(3), 728–736. https://doi.org/10.1162/jocn.2010.21472

    Article  Google Scholar 

  • Vukovic, R. K., Kieffer, M. J., Bailey, S. P., & Harari, R. R. (2013). Mathematics anxiety in young children: Concurrent and longitudinal associations with mathematical performance. Contemporary Educational Psychology, 38(1), 1–10. https://doi.org/10.1016/j.cedpsych.2012.09.001

    Article  Google Scholar 

  • Wechsler, D., Pearson Education, Inc., & Psychological Corporation. (2014). WISC-V: Wechsler Intelligence Scale for Children. NCS Pearson, Inc. : PsychCorp.

  • Wu, S. S., Barth, M., Amin, H., Malcarne, V., & Menon, V. (2012). Math anxiety in second and third graders and its relation to mathematics achievement. Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2012.00162

    Article  Google Scholar 

  • Yeo, W. T., Tan, A. L., & Jamaludin, A. (2022). ‘I feel like I’m fighting fire’: Teaching the young and educationally disadvantaged. Teaching and Teacher Education, 113, 103665.

    Article  Google Scholar 

  • Young, C. B., Wu, S. S., & Menon, V. (2012). The neurodevelopmental basis of math anxiety. Psychological science, 23(5), 492–501. https://doi.org/10.1177/0956797611429134

    Article  Google Scholar 

  • Zhang, J., Zhao, N., & Kong, Q. P. (2019). The relationship between math anxiety and math performance: A meta-analytic investigation. Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2019.01613

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Singapore National Research Foundation (NRF) under the Science of Learning Initiative (NRF2016-SOL002-003).

Funding

This research was funded by the Singapore National Research Foundation (NRF) under the Science of Learning Initiative (NRF2016-SOL002-003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aik Lim Tan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamaludin, A., Jabir, A.I., Wang, F. et al. Low-Progress Math in a High-Performing System: The Role of Math Anxiety in Singapore’s Elementary Learners. Asia-Pacific Edu Res (2023). https://doi.org/10.1007/s40299-023-00773-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40299-023-00773-7

Keywords

Navigation