Skip to main content
Log in

Global Existence of Strong Solutions and Serrin-Type Blowup Criterion for 3D Combustion Model in Bounded Domains

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

The combustion model is studied in three-dimensional (3D) smooth bounded domains with various types of boundary conditions. The global existence and uniqueness of strong solutions are obtained under the smallness of the gradient of initial velocity in some precise sense. Using the energy method with the estimates of boundary integrals, we obtain the a priori bounds of the density and velocity field. Finally, we establish the blowup criterion for the 3D combustion system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

No new data were generated or analysis is support of ths research.

References

  1. Abidi, H., Zhang, P.: Global well-posedness of 3-D density-dependent Navier–Stokes system with variable viscosity. Sci. China Math. 58, 1129–1150 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Antontsev, S.N., Kazhiktov, A., Monakhov, V.N.: Boundary Value Problems in Mechanics of Nonhomogeneous Fluids. Elsevier, Amsterdam (1989)

    Google Scholar 

  3. Aramaki, J.: \(L^p\) theory for the div-curl system. Int. J. Math. Anal. 8(6), 259–271 (2014)

    Article  MathSciNet  Google Scholar 

  4. Beirao Da Veiga, H.: Diffusion on viscous fluids Existence and asymptotic properties of solutions. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze 10(2), 341–355 (1983)

    MathSciNet  MATH  Google Scholar 

  5. Bresch, D., Essoufi, E.H., Sy, M.: Effect of density dependent viscosities on multiphasic incompressible fluid models. J. Math. Fluid Mech. 9(3), 377–397 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bresch, D., Giovangigli, V., Zatorska, E.: Two-velocity hydrodynamics in fluid mechanics: Part I well posedness for zero mach number systems. Journal de mathematiques pures et appliquees 104(4), 762–800 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cai, G., Li, J.: Existence and exponential growth of global classical solutions to the compressible Navier–Stokes equations with slip boundary conditions in 3D bounded domains. arXiv:2102.06348 (2021)

  8. Cai, G., Lü, B., Peng, Y.: Global strong solutions to density-dependent viscosity Navier–Stokes equations in 3D exterior domains. arXiv:2205.05925 (2022)

  9. Cai, X., Liao, L., Sun, Y.: Global regularity for the initial value problem of a 2-D Kazhikhov–Smagulov type model. Nonlinear Anal. Theory Methods Appl. 75(15), 5975–5983 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cai, X., Liao, L., Sun, Y.: Global strong solution to the initial-boundary value problem of a 2-D Kazhikhov–Smagulov type model. Discrete Contin. Dyn. Syst. S 7(5), 917 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cho, Y., Kim, H.: Unique solvability for the density-dependent Navier–Stokes equations. Nonlinear Anal. Theory Methods Appl. 59(4), 465–489 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. da Veiga, H.B., Serapioni, R., Valli, A.: On the motion of non-homogeneous fluids in the presence of diffusion. J. Math. Anal. Appl. 85(1), 179–191 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. Danchin, R., Liao, X.: On the well-posedness of the full low mach number limit system in general critical Besov spaces. Commun. Contemp. Math. 14(03), 1250022 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Embid, P.: Well-posedness of the nonlinear equations for zero mach number combustion. Commun. Partial Differ. Equ. 12(11), 1227–1283 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  15. Galdi, G.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations: Steady-State Problems. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  16. He, C., Li, J., Lü, B.: Global well-posedness and exponential stability of 3D Navier–Stokes equations with density-dependent viscosity and vacuum in unbounded domains. Arch. Ration. Mech. Anal. 239(3), 1809–1835 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  17. He, C., Xin, Z.: On the regularity of weak solutions to the magnetohydrodynamic equations. J. Differ. Equ. 213(2), 235–254 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Huang, X., Li, J., Wang, Y.: Serrin-type blowup criterion for full compressible Navier–Stokes system. Arch. Ration. Mech. Anal. 207(1), 303–316 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Huang, X., Li, J., Xin, Z.: Serrin-type criterion for the three-dimensional viscous compressible flows. SIAM J. Math. Anal. 43(4), 1872–1886 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Huang, X., Wang, Y.: Global strong solution of 3D inhomogeneous Navier–Stokes equations with density-dependent viscosity. J. Differ. Equ. 259(4), 1606–1627 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Jun Choe, H., Kim, H.: Strong solutions of the Navier–Stokes equations for nonhomogeneous incompressible fluids. Commun. Partial Differ. Equ. 28, 1183–1201 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kim, H.: A blow-up criterion for the nonhomogeneous incompressible Navier–Stokes equations. SIAM J. Math. Anal. 37(5), 1417–1434 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ladyzhenskaia, O.A., Solonnikov, V.A., Ural’tseva, N.N.: Linear and Quasi-linear Equations of Parabolic Type, vol. 23. American Mathematical Society, Providence (1988)

    Google Scholar 

  24. Leoni, G.: A First Course in Sobolev Spaces. American Mathematical Society, Providence (2017)

    Book  MATH  Google Scholar 

  25. Lions, P.-L.: Mathematical Topics in Fluid Mechanics. Incompressible Models, vol. 1. Oxford University Press, Oxford (1996)

    MATH  Google Scholar 

  26. Lions, P.-L.: Mathematical Topics in Fluid Mechanics. Compressible Models, vol. 2. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  27. Majda, A.: Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, vol. 53. Springer, Berlin (2012)

    Google Scholar 

  28. Nirenberg, L.: On elliptic partial differential equations. In: Il principio di minimo e sue applicazioni alle equazioni funzionali, pp. 1–48. Springer (2011)

  29. Novotny, A., Straskraba, I.: Introduction to the Mathematical Theory of Compressible Flow, vol. 27. OUP Oxford, Oxford (2004)

    Book  MATH  Google Scholar 

  30. Secchi, P.: On the motion of viscous fluids in the presence of diffusion. SIAM J. Math. Anal. 19(1), 22–31 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Serrin, J.: On the interior regularity of weak solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal. 9, 187–195 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  32. Simon, J.: Compact sets in the space \(L^p(0, T;B)\). Ann. Mat. 146(1), 65–96 (1986)

    Article  MATH  Google Scholar 

  33. Sun, Y., Zhang, Z.: Global regularity for the initial-boundary value problem of the 2-D Boussinesq system with variable viscosity and thermal diffusivity. J. Differ. Equ. 255(6), 1069–1085 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Tan, W.: Two-velocity hydrodynamics in fluid mechanics: global existence for 2D case. Nonlinearity 34(2), 964 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Von Wahl, W.: Estimating \(\nabla u\) by \({\rm div} u\) and \({\rm curle} u\). Math. Methods Appl. Sci. 15(2), 123–143 (1992)

    MathSciNet  MATH  Google Scholar 

  36. Xu, X., Zhang, J.: A blow-up criterion for 3D compressible magnetohydrodynamic equations with vacuum. Math. Models Methods Appl. Sci. 22(02), 1150010 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang, J.: Global well-posedness for the incompressible Navier–Stokes equations with density-dependent viscosity coefficient. J. Differ. Equ. 259(5), 1722–1742 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Zhang, J.: Well-posedness for 2D combustion model in bounded domains and Serrin-type blowup criterion. arXiv:2301.02976 (2023)

  39. Zhong, X.: Global strong solution for 3D viscous incompressible heat conducting Navier–Stokes flows with non-negative density. J. Differ. Equ. 263(8), 4978–4996 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would particularly like to acknowledge Professor Jing Li, for providing this problem and inspiring its interest in partial differential equations. The author would also like to thank the referee for his/her valuable comments and careful reading of the manuscript.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Jiawen Zhang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability

Not applicable.

Additional information

Communicated by Y. Giga.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J. Global Existence of Strong Solutions and Serrin-Type Blowup Criterion for 3D Combustion Model in Bounded Domains. J. Math. Fluid Mech. 25, 86 (2023). https://doi.org/10.1007/s00021-023-00830-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-023-00830-7

Keywords

Navigation