Skip to main content
Log in

Quantitative Analysis of RNA Polymerase Slippages for Production of P3N-PIPO Trans-frame Fusion Proteins in Potyvirids

  • Systems and Synthetic Microbiology and Bioinformatics
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Potyvirids, members of the family Potyviridae, produce the P3N-PIPO protein, which is crucial for the cell-to-cell transport of viral genomic RNAs. The production of P3N-PIPO requires an adenine (A) insertion caused by RNA polymerase slippage at a conserved GAAAAAA (GA6) sequence preceding the PIPO open reading frame. Presently, the slippage rate of RNA polymerase has been estimated in only a few potyvirids, ranging from 0.8 to 2.1%. In this study, we analyzed publicly available plant RNA-seq data and identified 19 genome contigs from 13 distinct potyvirids. We further investigated the RNA polymerase slippage rates at the GA6 motif. Our analysis revealed that the frequency of the A insertion variant ranges from 0.53 to 4.07% in 11 potyviruses (genus Potyvirus). For the two macluraviruses (genus Macluravirus), the frequency of the A insertion variant was found to be 0.72% and 10.96% respectively. Notably, the estimated RNA polymerase slippage rates for 12 out of the 13 investigated potyvirids were reported for the first time in this study. Our findings underscore the value of plant RNA-seq data for quantitative analysis of potyvirid genome variants, specifically at the GA6 slippage site, and contribute to a more comprehensive understanding of the RNA polymerase slippage phenomenon in potyvirids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

We used only publicly available data, and the accession numbers are presented in the text or tables.

References

  • Adams, M. J., Antoniw, J. F., & Beaudoin, F. (2005a). Overview and analysis of the polyprotein cleavage sites in the family Potyviridae. Molecular Plant Pathology, 6, 471–487.

    Article  CAS  PubMed  Google Scholar 

  • Adams, M. J., Antoniw, J. F., & Fauquet, C. M. (2005b). Molecular criteria for genus and species discrimination within the family Potyviridae. Archives of Virology, 150, 459–479.

    Article  CAS  PubMed  Google Scholar 

  • Bejerman, N., Debat, H., & Dietzgen, R. G. (2020). The plant negative-sense RNA virosphere: Virus discovery through new eyes. Frontiers in Microbiology, 11, 588427.

    Article  PubMed  PubMed Central  Google Scholar 

  • Capella-Gutiérrez, S., Silla-Martínez, J. M., & Gabaldón, T. (2009). trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics, 25, 1972–1973.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chai, M., Wu, X., Liu, J., Fang, Y., Luan, Y., Cui, X., Zhou, X., Wang, A., & Cheng, X. (2020). P3N-PIPO interacts with P3 via the shared N-terminal domain to recruit viral replication vesicles for cell-to-cell movement. Journal of Virology, 94, e01898-e1919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi, D., Rai, M., Rai, A., Shin, C., Yamazaki, M., & Hahn, Y. (2023). High-throughput RNA sequencing analysis of Mallotus japonicus revealed novel polerovirus and amalgavirus. Acta Virologica, 67, 13–23.

    Article  CAS  PubMed  Google Scholar 

  • Choi, D., Shin, C., Shirasu, K., & Hahn, Y. (2021). Two novel poty-like viruses identified from the transcriptome data of purple witchweed (Striga hermonthica). Acta Virologica, 65, 365–372.

    Article  CAS  PubMed  Google Scholar 

  • Choi, D., Shin, C., Shirasu, K., Ichihashi, Y., & Hahn, Y. (2022). Artemisia capillaris nucleorhabdovirus 1, a novel member of the genus Alphanucleorhabdovirus, identified in the Artemisia capillaris transcriptome. Acta Virologica, 66, 149–156.

    Article  CAS  PubMed  Google Scholar 

  • Chung, B. Y. W., Miller, W. A., Atkins, J. F., & Firth, A. E. (2008). An overlapping essential gene in the Potyviridae. Proceedings of the National Academy of Sciences, 105, 5897–5902.

    Article  CAS  Google Scholar 

  • Cui, H., & Wang, A. (2019). The biological impact of the hypervariable N-terminal region of potyviral genomes. Annual Review of Virology, 6, 255–274.

    Article  CAS  PubMed  Google Scholar 

  • Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26, 2460–2461.

    Article  CAS  PubMed  Google Scholar 

  • Geng, C., Cong, Q. Q., Li, X. D., Mou, A. L., Gao, R., Liu, J. L., & Tian, Y. P. (2015). Developmentally regulated plasma membrane protein of Nicotiana benthamiana contributes to potyvirus movement and transports to plasmodesmata via the early secretory pathway and the actomyosin system. Plant Physiology, 167, 394–410.

    Article  CAS  PubMed  Google Scholar 

  • Goh, C. J., & Hahn, Y. (2021). Analysis of proteolytic processing sites in potyvirus polyproteins revealed differential amino acid preferences of NIa-Pro protease in each of seven cleavage sites. PLoS ONE, 16, e0245853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagiwara-Komoda, Y., Choi, S. H., Sato, M., Atsumi, G., Abe, J., Fukuda, J., Honjo, M. N., Nagano, A. J., Komoda, K., Nakahara, K. S., et al. (2016). Truncated yet functional viral protein produced via RNA polymerase slippage implies underestimated coding capacity of RNA viruses. Scientific Reports, 6, 21411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q., & Vinh, L. S. (2018). UFBoot2: Improving the ultrafast bootstrap approximation. Molecular Biology and Evolution, 35, 518–522.

    Article  CAS  PubMed  Google Scholar 

  • Inoue-Nagata, A. K., Jordan, R., Kreuze, J., Li, F., López-Moya, J. J., Mäkinen, K., Ohshima, K., & Wylie, S. J. (2022). ICTV virus taxonomy profile: Potyviridae 2022. Journal of General Virology103, 001738.

    Article  CAS  Google Scholar 

  • Li, F., Xu, D., Abad, J., & Li, R. (2012). Phylogenetic relationships of closely related potyviruses infecting sweet potato determined by genomic characterization of Sweet potato virus G and Sweet potato virus 2. Virus Genes, 45, 118–125.

    Article  CAS  PubMed  Google Scholar 

  • Li, H. (2014). Toward better understanding of artifacts in variant calling from high-coverage samples. Bioinformatics, 30, 2843–2851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., von Haeseler, A., & Lanfear, R. (2020). IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution, 37, 1530–1534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mostafavi, F. S., Sabbagh, S. K., Yamchi, A., Nasrollanejad, S., & Panjehkeh, N. (2019). Differential molecular response of maize and Johnson grass against maize dwarf mosaic virus and bermuda grass southern mosaic virus. Acta Virologica, 63, 70–79.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, T., Yamada, K. D., Tomii, K., & Katoh, K. (2018). Parallelization of MAFFT for large-scale multiple sequence alignments. Bioinformatics, 34, 2490–2492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olspert, A., Carr, J. P., & Firth, A. E. (2016). Mutational analysis of the Potyviridae transcriptional slippage site utilized for expression of the P3N-PIPO and P1N-PISPO proteins. Nucleic Acids Research, 44, 7618–7629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olspert, A., Chung, B. Y. W., Atkins, J. F., Carr, J. P., & Firth, A. E. (2015). Transcriptional slippage in the positive-sense RNA virus family Potyviridae. EMBO Reports, 16, 995–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palani, S. N., Sankaranarayanan, R., & Tennyson, J. (2021). Comparative study of potyvirid NIa proteases and their cleavage sites. Archives of Virology, 166, 1141–1149.

    Article  CAS  PubMed  Google Scholar 

  • Park, D., Goh, C. J., & Hahn, Y. (2021). Two novel closteroviruses, fig virus A and fig virus B, identified by the analysis of the high-throughput RNA-sequencing data of fig (Ficus carica) latex. Acta Virologica, 65, 42–48.

    Article  CAS  PubMed  Google Scholar 

  • Park, D., & Hahn, Y. (2021). Identification of genome sequences of novel partitiviruses in the quinoa (Chenopodium quinoa) transcriptome datasets. Journal of General Plant Pathology, 87, 236–241.

    Article  CAS  Google Scholar 

  • Park, D., Kim, H., & Hahn, Y. (2017). Genome sequence of a distinct watermelon mosaic virus identified from ginseng (Panax ginseng) transcriptome. Acta Virologica, 61, 479–482.

    Article  CAS  PubMed  Google Scholar 

  • Pasin, F., Daròs, J. A., & Tzanetakis, I. E. (2022). Proteome expansion in the Potyviridae evolutionary radiation. FEMS Microbiology Reviews, 46, 11.

    Article  Google Scholar 

  • Pearson, W. R., & Lipman, D. J. (1988). Improved tools for biological sequence comparison. Proceedings of the National Academy of Sciences of the USA, 85, 2444–2448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qing, Z., Ahmad, S., Chen, Y., Liang, Q., Zhang, L., Chen, B., & Wen, R. (2023). P3/P3N-PIPO of PVY interacting with BI-1 inhibits the degradation of NIb by ATG6 to facilitate virus replication in N. benthamiana. Frontiers in Plant Science, 14, 1183144.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodamilans, B., Valli, A., Mingot, A., San León, D., Baulcombe, D., López-Moya, J. J., & García, J. A. (2015). RNA polymerase slippage as a mechanism for the production of frameshift gene products in plant viruses of the Potyviridae family. Journal of Virology, 89, 6965–6967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin, C., Choi, D., Shirasu, K., & Hahn, Y. (2022a). Identification of dicistro-like viruses in the transcriptome data of Striga asiatica and other plants. Acta Virologica, 66, 157–165.

    Article  CAS  PubMed  Google Scholar 

  • Shin, C., Choi, D., Shirasu, K., Ichihashi, Y., & Hahn, Y. (2022b). A novel RNA virus, Thesium chinense closterovirus 1, identified by high-throughput RNA-sequencing of the parasitic plant Thesium chinense. Acta Virologica, 66, 206–215.

    Article  CAS  PubMed  Google Scholar 

  • Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38, 3022–3027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Untiveros, M., Olspert, A., Artola, K., Firth, A. E., Kreuze, J. F., & Valkonen, J. P. (2016). A novel sweet potato potyvirus open reading frame (ORF) is expressed via polymerase slippage and suppresses RNA silencing. Molecular Plant Pathology, 17, 1111–1123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vijayapalani, P., Maeshima, M., Nagasaki-Takekuchi, N., & Miller, W. A. (2012). Interaction of the trans-frame potyvirus protein P3N-PIPO with host protein PCaP1 facilitates potyvirus movement. PLoS Pathogens, 8, e1002639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, A. (2021). Cell-to-cell movement of plant viruses via plasmodesmata: A current perspective on potyviruses. Current Opinion in Virology, 48, 10–16.

    Article  CAS  PubMed  Google Scholar 

  • Wei, T., Zhang, C., Hong, J., Xiong, R., Kasschau, K. D., Zhou, X., Carrington, J. C., & Wang, A. (2010). Formation of complexes at plasmodesmata for potyvirus intercellular movement is mediated by the viral protein P3N-PIPO. PLoS Pathogens, 6, e1000962.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wen, R. H., & Hajimorad, M. R. (2010). Mutational analysis of the putative pipo of soybean mosaic virus suggests disruption of PIPO protein impedes movement. Virology, 400, 1–7.

    Article  CAS  PubMed  Google Scholar 

  • White, K. A. (2015). The polymerase slips and PIPO exists. EMBO Reports, 16, 885–886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, X., Li, Y., & Wang, A. (2021). Research advances in potyviruses: From the laboratory bench to the field. Annual Review of Phytopathology, 59, 1–29.

    Article  PubMed  Google Scholar 

  • Yu, C., Miao, R., Ye, Z., MacFarlane, S., Lu, Y., Li, J., Yang, J., Yan, F., Dai, L., & Chen, J. (2021). Integrated proteomics and transcriptomics analyses reveal the transcriptional slippage of P3N-PIPO in a Bymovirus P3N-PIPO gene expressed from a PVX vector in Nicotiana benthamiana. Viruses, 13, 1247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) Grants funded by the Government of Korea (Grant numbers: 2018R1A5A1025077 and RS-2023-00208564).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoonsoo Hahn.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 59 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, D., Hahn, Y. Quantitative Analysis of RNA Polymerase Slippages for Production of P3N-PIPO Trans-frame Fusion Proteins in Potyvirids. J Microbiol. 61, 917–927 (2023). https://doi.org/10.1007/s12275-023-00083-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-023-00083-z

Keywords

Navigation