Skip to main content
Log in

Nonlinear Vibration Isolation of Spacecraft System by a Bionic Variable-Stiffness Device Enhanced by Electromagnetic Component

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

This study addresses the modified bionic vibration isolation technology by introducing the electromagnetic system to simulate biological damping characteristics. It has been proven effective in improving the vibration environment. By assuming the spacecraft-adapter system as a two-degree-of-freedom system, an excellent simplified model can be derived. The novel bionic vibration isolation device (ABVS-EMVI), which combines an active bionic variable-stiffness device (ABVSVI) with the electromagnetic system, is proposed for the purpose of isolating vibration and harvesting energy at the same time. The dynamic equations of the spacecraft-adapter system with ABVS-EMVI are obtained using the Taylor expansion within the framework of the Lagrange equation, and the harmonic balance method is introduced to acquire the amplitude and voltage response of the system. The results indicate that the electromagnetic system can enhance the vibration isolation performance and provide energy harvesting capabilities. After confirming the ability of ABVS-EMVI to deal with different forms and amplitudes of excitation, the performance of vibration isolation and energy harvesting is investigated in terms of various parameters, and several new conclusions have been drawn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu LK, Zheng GT. Parameter analysis of PAF for whole-spacecraft vibration isolation. Aerosp Sci Technol. 2007;11(6):464–72.

    Article  MATH  Google Scholar 

  2. Chen SY, Yang ZH, Ying MX, Zheng YW, Liu YJ, Pan ZW. Parallel load-bearing and damping system design and test for satellite vibration suppression. Appl Sci. 2020;10(4):1548–60.

    Article  Google Scholar 

  3. Liu CR, Yu KP. Design and experimental study of a quasi-zero-stiffness vibration isolator incorporating transverse groove springs. Arch Civ Mech Eng. 2020;20(3):1–21.

    Article  Google Scholar 

  4. Sun XT, Zhang S, Xu J, Wang F. Dynamical analysis and realization of an adaptive isolator. J Appl Mech-T ASME. 2018;85:1–13.

    Google Scholar 

  5. Carrella A, Brennan MJ, Waters TP. Optimization of a quasi-zero-stiffness isolator. J Mech Sci Technol. 2007;21(6):946–9.

    Article  Google Scholar 

  6. Sun XT, Wang F, Xu J. Design and experiment of continuous isolation structure with local quasi-zero-stiffness property by magnetic interaction. Int J Non Linear Mech. 2019;116:289–301.

    Article  Google Scholar 

  7. Ling P, Miao LL, Zhang WM, Wu CY, Yan B. Cockroach-inspired structure for low-frequency vibration isolation. Mech Syst Signal Process. 2022;171: 108955.

    Article  Google Scholar 

  8. Sun XT, Wang F, Xu J. A novel dynamic stabilization and vibration isolation structure inspired by the role of avian neck. Int J Mech Sci. 2021;193: 106166.

    Article  Google Scholar 

  9. Jiang GQ, Jing XJ, Guo YQ. A novel bio-inspired multi-joint anti-vibration structure and its nonlinear HSLDS properties. Mech Syst Signal Process. 2020;138: 106552.

    Article  Google Scholar 

  10. Bian J, Jing XJ. Analysis and design of a novel and compact X-structured vibration isolation mount (X-Mount) with wider quasi-zero-stiffness range. Nonlinear Dyn. 2020;101(4):2195–222.

    Article  Google Scholar 

  11. Sun XT, Qi ZF, Xu J. Vibration properties of a knee bio-inspired nonlinear isolation structure. Int J Non Linear Mech. 2022;147: 104245.

    Article  Google Scholar 

  12. Yan B, Ling P, Miao LL, Yu N, Sun JJ, Li QC. Ultra-low vibration frequency isolation of cockroach-inspired structures with electromagnetic shunt damping enhanced by geometric nonlinearity. IEEE/ASME Trans Mech. 2023. https://doi.org/10.1109/TMECH.2023.3287915.

    Article  Google Scholar 

  13. Zang J, Cao RQ, Zhang YW, Fang B, Chen LQ. A lever-enhanced nonlinear energy sink absorber harvesting vibratory energy via giant magnetostrictive-piezoelectricity. Commun Nonlinear Sci Numer Simul. 2021;95: 105620.

    Article  MathSciNet  MATH  Google Scholar 

  14. Yan B, Zhang XN, Luo YJ, Zhang ZF, Xie SL, Zhang YH. Negative impedance shunted electromagnetic absorber for broadband absorbing: Experimental investigation. Smart Mater Struct. 2014;23(12): 125044.

    Article  Google Scholar 

  15. Fang ZW, Zhang YW, Li X, Ding H, Chen LQ. Integration of a nonlinear energy sink and a giant magnetostrictive energy harvester. J Sound Vib. 2017;391:35–49.

    Article  Google Scholar 

  16. Yan B, Ma HY, Zheng WG, Jian B, Wang K, Wu CY. Nonlinear electromagnetic shunt damping for nonlinear vibration isolators. IEEE/ASME Trans Mechatronics. 2019;24:1851–60.

    Article  Google Scholar 

  17. Xie LH, Li JH, Cai SQ, Li XD. Electromagnetic energy-harvesting damper with multiple independently controlled transducers: On-demand damping and optimal energy regeneration. IEEE/ASME Trans Mechatronics. 2017;22(6):2705–13.

    Article  Google Scholar 

  18. Joubaneh EF, Barry OR. On the improvement of vibration mitigation and energy harvesting using electromagnetic vibration absorber-inerter: exact H2 optimization. J Vib Acoust. 2019;141(6):061007.

    Article  Google Scholar 

  19. Cai QL, Zhu SY. Enhancing the performance of electromagnetic damper cum energy harvester using microcontroller: Concept and experiment validation. Mech Syst Signal Process. 2019;134: 106339.

    Article  Google Scholar 

  20. Ma HY, Yan B, Zhang L, Zheng WG, Wang PF, Wu CY. On the design of nonlinear damping with electromagnetic shunt damping. Int J Mech Sci. 2020;175: 105513.

    Article  Google Scholar 

  21. Ma HY, Yan B. Nonlinear damping and mass effects of electromagnetic shunt damping for enhanced nonlinear vibration isolation. Mech Syst Signal Process. 2021;146: 107010.

    Article  Google Scholar 

  22. Yang K, Zhang YW, Ding H, Yang TZ, Li Y, Chen LQ. Nonlinear energy sink for whole-spacecraft vibration reduction. J Vib Acoust Trans ASME. 2017;139(2): 021011.

    Article  Google Scholar 

  23. Churchill CB, Shahan DW, Smith SP, Keefe AC, McKnight GP. Materials engineering: dynamically variable negative stiffness structures. Sci Adv. 2016;2(2): e1500778.

    Article  Google Scholar 

  24. Song XY, Chai ZY, Zhang YW, Zang J, Xu KF. Nonlinear vibration isolation via an innovative active bionic variable stiffness adapter (ABVSA). Nonlinear Dyn. 2022;109(2):353–70.

    Article  Google Scholar 

  25. Zheng WG, Yan B, Ma HY, Wang RY, Jia JM, Zhang L, Wu CY. Tuning of natural frequency with electromagnetic shunt mass. Smart Mater Struct. 2019;28(2): 025026.

    Article  Google Scholar 

  26. Xu KF, Zhang YW, Niu MQ, Zang J, Xue J, Chen LQ. An improved nonlinear energy sink with electromagnetic damping and energy harvesting. Int J Appl Mech. 2022. https://doi.org/10.1142/S1758825122500557.

    Article  Google Scholar 

Download references

Acknowledgements

This project is supported by the National Natural Science Foundation of China (Grant Nos. 12022213, 12002329, and 12272240).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuyuan Song or Yewei Zhang.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflicts of interest regarding the publication of this article.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chai, Z., Song, X., Zang, J. et al. Nonlinear Vibration Isolation of Spacecraft System by a Bionic Variable-Stiffness Device Enhanced by Electromagnetic Component. Acta Mech. Solida Sin. 36, 921–932 (2023). https://doi.org/10.1007/s10338-023-00431-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-023-00431-x

Keywords

Navigation