Skip to main content
Log in

On the Dirichlet problem for the Schrödinger equation in the upper half-space

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

A well-known result of Stein-Weiss in 1971 said that a harmonic function, defined on the upper half-space, is the Poisson integral of a Lebesgue function if and only if it is also a Lebesgue function uniformly in the time variable. Under a metric measure space setting, we show that a solution to the elliptic equation with a non-negative potential, defined on the upper half-space, is in the essentially-bounded-Morrey space with variable exponent if and only if it can be represented as the Poisson integral of a variable Morrey function, where the doubling property, the pointwise upper bound on the heat kernel, the mean value property and the Liouville property are assumed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

Not applicable.

Notes

  1. In fact, this assumption is more or less different from the corresponding assumption of [21] in form, but they are coincident with each other.

  2. When the potential v is non-trivial, the sharp upper bound of \(h_t^v(x,y)\) may be controlled by the classical heat kernel with an additional exponential decay term; see [42] for example.

  3. When the potential v is non-trivial, there are two points should to be mentioned. On the one hand, the boundedness for an \(\mathbb {L}\)-harmonic function may be relaxed to the polynomial growth; see Examples 2.13 and 2.14 for more details. On the other hand, the “constant” in the conclusion must be zero due to the structure of the elliptic equation.

  4. Note that we can improve the critical reverse Hölder index \((n\text {+}1)/2\) to n/2 through some totally different techniques.

  5. In [37], the author assume \(n\ge 3\).

  6. If \(n\,\hbox {=}\,1\) or \(n\,\hbox {=}\,2\), the Kato condition (K) is superfluous. We can alone assume that the potential v is in the Muckenhoupt class \(A_\infty \).

  7. We thanks Prof. Kangwei Li provide the counter-example \(v(x)\,\hbox {=}\,|x|^{-2}\).

References

  1. Adamowicz, T., Harjulehto, P., Hästö, P.: Maximal operator in variable exponent Lebesgue spaces on unbounded quasimetric measure spaces. Math. Scand. 116(1), 5–22 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Almeida, A., Hasanov, J., Samko, S.: Maximal and potential operators in variable exponent Morrey spaces. Georgian Math. J. 15(2), 195–208 (2008)

    MathSciNet  MATH  Google Scholar 

  3. Bui, T., Duong, X., Ly, F.: Maximal function characterizations for new local Hardy-type spaces on spaces of homogeneous type. Trans. Am. Math. Soc. 370, 7229–7292 (2018)

    MathSciNet  MATH  Google Scholar 

  4. Burenkov, V., Guliyev, V., Tararykova, T.: Comparison of Morrey spaces and Nikol’skii spaces. Eurasian Math. J. 12, 9–20 (2021)

    MathSciNet  MATH  Google Scholar 

  5. Cao, J., Liu, Y., Yang, D., Zhang, C.: Gaussian estimates for heat kernels of higher order Schrödinger operators with potentials in generalized Schechter classes. J. Lond. Math. Soc. (2) 106(3), 2136–2192 (2022)

    MathSciNet  MATH  Google Scholar 

  6. Chen, P., Duong, X., Li, J., Song, L., Yan, L.: Carleson measures, BMO spaces and balayages associated to Schrödinger operators. Sci. China Math. 60(11), 2077–2092 (2017)

    MathSciNet  MATH  Google Scholar 

  7. Chen, P., Duong, X., Li, J., Yan, L.: Sharp endpoint \(L^p\) estimates for Schrödinger groups. Math. Ann. 378(1–2), 667–702 (2020)

    MathSciNet  MATH  Google Scholar 

  8. Coulhon, T., Sikora, A.: Gaussian heat kernel upper bounds via the Phragmén–Lindelöf theorem. Proc. Lond. Math. Soc. (3) 96(2), 507–544 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Cruz-Uribe, D., Fiorenza, A.: Variable Lebesgue Spaces. Foundations and Harmonic Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, Heidelberg, p. x+312 (2013). ISBN: 978-3-0348-0547-6, 978-3-0348-0548-3

  10. Cruz-Uribe, D., Shukla, P.: The boundedness of fractional maximal operators on variable Lebesgue spaces over spaces of homogeneous type. Stud. Math. 242(2), 109–139 (2018)

    MathSciNet  MATH  Google Scholar 

  11. Cruz-Uribe, D., Wang, L.: Variable Hardy spaces. Indiana Univ. Math. J. 63(2), 447–493 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Diening, L., Hästö, P., Ružička, M.: Function spaces of variable smoothness and integrability. J. Funct. Anal. 256(6), 1731–1768 (2009)

    MathSciNet  MATH  Google Scholar 

  13. Diening, L., Harjulehto, P., Hästö, P., Ružička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics, vol. 2017. Springer, Heidelberg (2011)

  14. Duong, X., Yan, L., Zhang, C.: On characterization of Poisson integrals of Schrödinger operators with BMO traces. J. Funct. Anal. 266(4), 2053–2085 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Fabes, E., Johnson, R., Neri, U.: Spaces of harmonic functions representable by Poisson integrals of functions in BMO and \(L_{p,\lambda }\). Indiana Univ. Math. J. 25(2), 159–170 (1976)

    MathSciNet  MATH  Google Scholar 

  16. Fabes, E., Neri, U.: Characterization of temperatures with initial data in BMO. Duke Math. J. 42(4), 725–734 (1975)

    MathSciNet  MATH  Google Scholar 

  17. Fan, X.: Variable exponent Morrey and Campanato spaces. Nonlinear Anal. 72(11), 4148–4161 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Fefferman, C., Stein, E.: \(H^p\) spaces of several variables. Acta Math. 129(3–4), 137–193 (1972)

    MathSciNet  MATH  Google Scholar 

  19. Grigor’yan, A.: Gaussian upper bounds for the heat kernel on arbitrary manifolds. J. Differ. Geom. 45(1), 33–52 (1997)

    MathSciNet  MATH  Google Scholar 

  20. Guliyev, V., Omarova, M., Ragusa, M., Scapellato, A.: Regularity of solutions of elliptic equations in divergence form in modified local generalized Morrey spaces. Anal. Math. Phys. 11(1), 13 (2021)

    MathSciNet  MATH  Google Scholar 

  21. Ho, K.: The fractional integral operators on Morrey spaces with variable exponent on unbounded domains. Math. Inequal. Appl. 16(2), 363–373 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Jiang, R., Li, B.: Dirichlet problem for Schrödinger equation with the boundary value in the BMO space. Sci. China Math. 65(7), 1431–1468 (2022)

    MathSciNet  MATH  Google Scholar 

  23. Jiang, R., Xiao, J., Yang, D.: Towards spaces of harmonic functions with traces in square Campanato spaces and their scaling invariants. Anal. Appl. (Singap.) 14(5), 679–703 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Jiang, R., Yang, D., Yang, D.: Maximal function characterizations of Hardy spaces associated with magnetic Schrödinger operators. Forum Math. 24(3), 471–494 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Li, B., Li, J., Lin, Q., Ma, B., Shen, T.: A revisit to “On BMO and Carleson measures on Riemannian manifolds”. Proc. R. Soc. Edinb. Sect. A. https://doi.org/10.1017/prm.2023.58

  26. Li, B., Ma, B., Shen, T., Wu, X., Zhang, C.: On the caloric functions with BMO traces and their limiting behaviors. J. Geom. Anal. 33(7), 215 (2023)

    MathSciNet  MATH  Google Scholar 

  27. Liu, D., Tan, J., Zhao, J.: The characterisation of BMO via commutators in variable Lebesgue spaces on stratified groups. Bull. Korean Math. Soc. 59(3), 547–566 (2022)

    MathSciNet  MATH  Google Scholar 

  28. Liu, J., Weisz, F., Yang, D., Yuan, W.: Variable anisotropic Hardy spaces and their applications. Taiwan. J. Math. 22(5), 1173–1216 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Morrey, C.: On the solutions of quasi-linear elliptic partial differential equations. Trans. Am. Math. Soc. 43(1), 126–166 (1938)

    MathSciNet  MATH  Google Scholar 

  30. Nakai, E.: Hardy–Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces. Math. Nachr. 166, 95–103 (1994)

    MathSciNet  MATH  Google Scholar 

  31. Nakai, E., Sawano, Y.: Hardy spaces with variable exponents and generalized Campanato spaces. J. Funct. Anal. 262(9), 3665–3748 (2012)

    MathSciNet  MATH  Google Scholar 

  32. Ragusa, M.: Local Hölder regularity for solutions of elliptic systems. Duke Math. J. 113(2), 385–397 (2002)

    MathSciNet  MATH  Google Scholar 

  33. Shi, C., Xu, J.: Herz type Besov and Triebel-Lizorkin spaces with variable exponent. Front. Math. China 8(4), 907–921 (2013)

    MathSciNet  MATH  Google Scholar 

  34. Stein, E.: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. Princeton Mathematical Series, 43. Monographs in Harmonic Analysis, III. Princeton University Press, Princeton, NJ, p. xiv+695 (1993)

  35. Stein, E., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series, vol. 32, p. x+297. Princeton, Princeton University Press (1971)

    Google Scholar 

  36. Sturm, K.: Analysis on local Dirichlet Spaces. III. The Parabolic Harnack Inequality. J. Math. Pures Appl. 75, 273–297 (1996)

    MathSciNet  MATH  Google Scholar 

  37. Shen, Z.: \(L^p\) estimates for Schrödinger operators with certain potentials. Ann. Inst. Fourier (Grenoble) 45(2), 513–546 (1995)

    MathSciNet  MATH  Google Scholar 

  38. Song, L., Tian, X., Yan, L.: On characterization of Poisson integrals of Schrödinger operators with Morrey traces. Acta Math. Sin. Engl. Ser. 34(4), 787–800 (2018)

    MathSciNet  MATH  Google Scholar 

  39. Tan, J.: Atomic decompositions of localized Hardy spaces with variable exponents and applications. J. Geom. Anal. 29(1), 799–827 (2019)

    MathSciNet  MATH  Google Scholar 

  40. Tan, J., Zhao, J.: Rough fractional integrals and its commutators on variable Morrey spaces. C. R. Math. Acad. Sci. Paris 353(12), 1117–1122 (2015)

    MathSciNet  MATH  Google Scholar 

  41. Wang, Y., Xiao, J.: Homogeneous Campanato–Sobolev classes. Appl. Comput. Harmon. Anal. 39(2), 214–247 (2015)

    MathSciNet  MATH  Google Scholar 

  42. Wu, L., Yan, L.: Heat kernels, upper bounds and Hardy spaces associated to the generalized Schrödinger operators. J. Funct. Anal. 270(10), 3709–3749 (2016)

    MathSciNet  MATH  Google Scholar 

  43. Xu, J.: Variable Besov and Triebel-Lizorkin spaces. Ann. Acad. Sci. Fenn. Math. 33(2), 511–522 (2008)

    MathSciNet  MATH  Google Scholar 

  44. Yang, D., Yuan, W., Zhuo, C.: A Survey on Some Variable Function Spaces. Function Spaces and Inequalities. Springer Proc. Math. Stat., 206. Springer, Singapore, 299–335 (2017)

  45. Yang, D., Yang, D., Zhou, Y.: Endpoint properties of localized Riesz transforms and fractional integrals associated to Schrödinger operators. Potential Anal. 30(3), 271–300 (2009)

    MathSciNet  MATH  Google Scholar 

  46. Yang, D., Yang, D., Zhou, Y.: Localized Morrey–Campanato spaces on metric measure spaces and applications to Schrödinger operators. Nagoya Math. J. 198, 77–119 (2010)

    MathSciNet  MATH  Google Scholar 

  47. Yang, D., Zhuo, C., Yuan, W.: Besov-type spaces with variable smoothness and integrability. J. Funct. Anal. 269(6), 1840–1898 (2015)

    MathSciNet  MATH  Google Scholar 

  48. Yan, X., Yang, D., Yuan, W., Zhuo, C.: Variable weak Hardy spaces and their applications. J. Funct. Anal. 271(10), 2822–2887 (2016)

    MathSciNet  MATH  Google Scholar 

  49. Zhuo, C., Sawano, Y., Yang, D.: Hardy spaces with variable exponents on RD-spaces and applications. Dissertationes Math. 520, 74 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

Bo Li is supported by National Natural Science Foundation of China (12201250) and Natural Science Foundation of Zhejiang Province of China (LQ23A010007). Jian Tan is supported by National Natural Science Foundation of China (11901309), China Postdoctoral Science Foundation (2023T160296), and Natural Science Foundation of Nanjing University of Posts and Telecommunications (NY222168).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equality and significantly in writing this paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jian Tan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Shen, T., Tan, J. et al. On the Dirichlet problem for the Schrödinger equation in the upper half-space. Anal.Math.Phys. 13, 85 (2023). https://doi.org/10.1007/s13324-023-00834-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-023-00834-6

Keywords

Mathematics Subject Classification

Navigation