Skip to main content
Log in

Radiation Characteristics of Shock-Heated Air in the Visible and Infrared Spectral Ranges

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The integral and temporal spectral characteristics of shock-heated air are measured in the shock wave velocity range from 7.35 to 10.4 km/s at the pressure ahead of the shock front p0 = 0.25 Torr. The experiments are carried out on the DDST-M shock-wave setup of the Institute of Mechanics of Moscow State University. The radiation wave range λ = 600–1100 nm is studied; it corresponds to the visible and near infrared spectral ranges, where the main contribution to the radiation is made by the atomic lines of nitrogen and oxygen. The integral-in-time radiation spectrograms obtained in the experiments are analyzed. The distinctive features of the time oscillograms are defined for the most typical atomic lines of the spectrum. The measurement data are compared with the experimental data of other authors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Wessen, R.R., Propster, P., Cable, M. et al., Developing compelling and science-focused mission concepts for NASA competed mission proposals, Acta Astronaut., 2022, vol. 191, pp. 502–509.

    Article  ADS  Google Scholar 

  2. Leitner, J. and Hyde, T., Modernizing NASA’s risk classification system, Acta Astronaut., 2023, vol. 202, pp. 333–340.

    Article  ADS  Google Scholar 

  3. Surzhikov, S.G. and Yatsukhno, D.S., Analysis of the flight data in convective and radiative heating of the surface of Martian Schiaparelli descent space vehicle, Fluid Dyn., 2022, vol. 57, no. 6, pp. 768–779.

    Article  ADS  MATH  Google Scholar 

  4. Surzhikov, S.G., Three-dimensional problem of radiative gasdynamics of Apollo-3 command module during superorbital atmospheric entry, Fluid Dyn., 2018, vol. 53, no. 2, pp. 325–336.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Uyanna O. and Najafi H., Thermal protection systems for space vehicles: A review on technology development, current challenges and future prospects, Acta Astronaut., 2020, vol. 176, pp. 341–356.

    Article  ADS  Google Scholar 

  6. Kolesnikov, A.F., Vasil’evskii, S.A., Shchelokov, S.L., Chaplygin, A.V., and Galkin, S.S., Analysis of the possibilities of local simulation of aerodynamic heating in a powerful VGU-3 HF-plasmatron, Fluid Dyn., 2022, vol. 57, no. 6, pp. 811–819.

    Article  ADS  MATH  Google Scholar 

  7. Reyner, P., Survey of high-enthalpy shock facilities in the perspective of radiation and chemical kinetics investigations, Progr. Aerospace Sci., 2016, vol. 85, pp. 1–32.

    Article  ADS  Google Scholar 

  8. Brandis, A.M., Johnson, C.O., and Cruden, B.A., Investigation of non-equilibrium radiation for Earth entry, AIAA Paper 2016-3690.

  9. Kozlov, P.V. and Surzhikov, S.T., Nonequilibrium radiation NO in shocked air, AIAA Paper 2017–0157.

  10. Gu, S. and Olivier, H., Capabilities and limitations of existing hypersonic facilities, Progr. Aerospace Sci., 2020, vol. 113, no. 100607.

  11. Gerasimov, G.Ya., Kozlov, P.V., Zabelinsky, I.E., Bykova, N.G., and Levashov, V.Yu., Investigation of the radiation characteristics of high-temperature gases in shock tubes, Russian J. Phys. Chem. B, 2022, vol. 16, no. 4, pp. 642–654.

    Article  Google Scholar 

  12. Bykova, N.G., Zabelinskii, I.E., Ibragimova, L.B., Kozlov, P.V., Stovbun, S.V., Tereza, A.M., and Shatalov, O.P., Radiation characteristics of air in the ultraviolet and vacuum ultraviolet regions of the spectrum behind the front of strong shock waves, Russian J. Phys. Chem. B, 2018, vol. 12, no. 1, pp. 108–124.

    Article  Google Scholar 

  13. Kozlov, P.V., Zabelinskii, I.E., Bykova, N.G., Gerasimov, G.Ya., and Levashov, V.Yu., Experimental study of the radiative characteristics of shock-heated air in the ultraviolet and visible spectral regions, Fluid Dyn., 2022, vol. 57, no. 6, pp. 780–788.

    Article  ADS  Google Scholar 

  14. Kozlov, P.V., Zabelinsky, I.E., Bykova, N.G., Gerasimov, G.Ya., Levashov, V.Yu., and Tunik, Yu.V., Experimental study of air radiation behand a strong shock wave, Acta Astronaut., 2022, vol. 194, pp. 461–467.

    Article  ADS  Google Scholar 

  15. Cruden, B., Martinez, R., Grinstead, J., and Olejniczak, J., Simultaneous vacuum ultraviolet through near IR absolute radiation measurement with spatiotemporal resolution in an electric arc shock tube, AIAA Paper 2009–4240.

  16. Kozlov, P.V., Zabelinskii, I.E., Bykova, N.G., Akimov, Yu.V., Levashov, V.Yu., Gerasimov, G.Ya., and Tereza, A.M., Development of a technique for recording the intensity of the emission of gases behind the front of strong shock waves, Russian J. Phys. Chem. B, 2021, vol. 15, no. 4, pp. 659–666.

    Article  Google Scholar 

  17. NIST Atomic Spectra Database, Version 5.10. Gaithersburg: NIST, 2022. https://doi.org/10.18434/T4W30F

    Book  Google Scholar 

  18. Kazakov, V.V., Kazakov, V.G., Kovalev, V.S., Meshkov, O.I., and Yatsenko, A.S., Electronic structure of atoms: atomic spectroscopy information system, Phys. Scr., 2017, vol. 92, no. 105002.

  19. Brandis, A.M., Johnston, C.O., Cruden, B.A., Prabhu, D., and Bose, D., Uncertainty analysis and validation of radiation measurements for Earth reentry, J. Thermophys. Heat Trans., 2015, vol. 29, pp. 209–221.

    Article  Google Scholar 

  20. Jung, Y.-D. and Kim, C.-G., Classical bremsstrahlung radiation from electron–ion encounters in a nonideal plasma, J. Plasma Phys., 2022, vol. 67, pp. 191–197.

    Article  ADS  Google Scholar 

  21. Lemal, A., Jacobs, C.M., Perrin, M.-Y., Laux, C.O., Tran, P., and Raynaud, E., Prediction of nonequilibrium air plasma radiation behind a shock wave, J. Thermophys. Heat Trans., 2016, vol. 30, pp. 197–210.

    Article  Google Scholar 

  22. Surzhikov, S.T., Calculation of the nonequilibrium radiation of shock waves in the air using two models, Fluid Dyn., 2019, vol. 54, no. 1, pp. 98–113.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Brandis, A.M. and Cruden, B.A., Benchmark shock tube experiments of radiative heating relevant to Earth re-entry, AIAA Paper 2017–1145.

  24. Parker, R., Dufrene, A., Holden, M., and Wakeman, T., Shock-front emission measurements at 10 km/s, AIAA Paper 2011–715.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Levashov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Lebedev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlov, P.V., Zabelinskii, I.E., Bykova, N.G. et al. Radiation Characteristics of Shock-Heated Air in the Visible and Infrared Spectral Ranges. Fluid Dyn 58, 960–967 (2023). https://doi.org/10.1134/S0015462823601328

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462823601328

Keywords:

Navigation