Skip to main content

Advertisement

Log in

BIN1 in the Pursuit of Ousting the Alzheimer’s Reign: Impact on Amyloid and Tau Neuropathology

  • Review
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Alzheimer’s disease contributes to 60–70% of all dementia cases in the general population. Belonging to the BIN1/amphiphysin/RVS167 (BAR) superfamily, the bridging integrator (BIN1) has been identified to impact two major pathological hallmarks in Alzheimer’s disease (AD), i.e., amyloid beta (Aβ) and tau accumulation. Aβ accumulation is found to increase by BIN1 knockdown in cortical neurons in late-onset AD, due to BACE1 accumulation at enlarged early endosomes. Two BIN1 mutants, KR and PL, were identified to exhibit Aβ accumulation. Furthermore, BIN1 deficiency by BIN1-related polymorphisms impairs the interaction with tau, thus elevating tau phosphorylation, altering synapse structure and tau function. Even though the precise role of BIN1 in the neuronal tissue needs further investigation, the authors aim to throw light on the potential of BIN1 and unfold its implications on tau and Aβ pathology, to aid AD researchers across the globe to examine BIN1, as an appropriate target gene for disease management.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

Abbreviations

BIN1:

Bridging integrator 1

APOE:

Apolipoprotein E

AD:

Alzheimer disease

Aβ:

Amyloid beta

BACE1:

Beta-secretase 1

APP:

Amyloid precursor protein

GWAS:

Genome-wide association studies

CLAP:

Clathrin and AP2 binding

EEA1:

Early endosome antigen 1

CTF:

C-terminal fragments

References

  • Adams SL et al (2016) Subcellular changes in bridging integrator 1 protein expression in the cerebral cortex during the progression of Alzheimer disease pathology. J Neuropathol Exp Neurol 75(8):779–790. https://doi.org/10.1093/jnen/nlw056

  • Almeida CG, Takahashi RH, Gouras GK (2006) Beta-amyloid accumulation impairs multivesicular body sorting by inhibiting the ubiquitin-proteasome system. J Neurosci 26:4277–4288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alzheimer’s Gene BIN1 Promotes Synaptic Transmission | ALZFORUM [Internet]. www.alzforum.org. 2020 [cited 2023 Oct 11]. Available from: https://www.alzforum.org/news/research-news/alzheimers-gene-bin1-promotes-synaptic-transmission

  • Andrew RJ, De Rossi P, Nguyen P et al (2019) Reduction of the expression of the late-onset Alzheimer’s disease (AD) risk-factor BIN1 does not affect amyloid pathology in an AD mouse model. J Biol Chem 294:4477–4487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE (2007) Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet 39:17–23

    Article  PubMed  CAS  Google Scholar 

  • Betts MJ, Russell RB (2003) In: Barnes MR, Gray IC, eds. Bioinformatics for geneticists, John Wiley & Sons, Ltd, Chichester, UK: 289–316

  • Butler MH, David C, Ochoa GC et al (1997) Amphiphysin II (SH3P9; BIN1), a member of the amphiphysin/Rvs family, is concentrated in the cortical cytomatrix of axon initial segments and nodes of Ranvier in brain and around T tubules in skeletal muscle. J Cell Biol 137:1355–1367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Calafate S, Flavin W, Verstreken P, Moechars D (2016) Loss of bin1 promotes the propagation of tau pathology. Cell Rep 17:931–940

    Article  PubMed  CAS  Google Scholar 

  • Casal E, Federici L, Zhang W et al (2006) The crystal structure of the BAR domain from human Bin1/ amphiphysin II and its implications for molecular recognition. Biochemistry 45:12917–12928

    Article  PubMed  CAS  Google Scholar 

  • Cataldo AM, Peterhoff CM, Troncoso JC, Gomez-Isla T, Hyman BT, Nixon RA (2000) Endocytic pathway abnormalities precede amyloid beta deposition in sporadic Alzheimer’s disease and Down syndrome: differential effects of APOE genotype and presenilin mutations. Am J Pathol 157:277–286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chapuis J, Hansmannel F, Gistelinck M, Mounier A, Van Cauwenberghe C, Kolen KV et al (2013a) Increased expression of BIN1 mediates Alzheimer genetic risk by modulating tau pathology. Mol Psychiatry 18:1225–1234. https://doi.org/10.1038/mp.2013.1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chapuis J, Hansmannel F, Gistelinck M, Mounier A et al (2013b) Increased expression of BIN1 mediates Alzheimer genetic risk by modulating tau pathology. Mol Psychiatry 18:1225–1234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chapuis J et al (2013c) Increased expression of BIN1 mediates Alzheimer genetic risk by modulating tau pathology. Mol Psychiatry 18:1225–1234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chia PZC, Toh WH, Sharples R, Gasnereau I, Hill AF, Gleeson PA (2013) Intracellular itinerary of internalised β-secretase, BACE1, and its potential impact on β-amyloid peptide biogenesis. Traffic 14:997–1013

    Article  PubMed  CAS  Google Scholar 

  • Cirrito JR, Kang JE, Lee J et al (2008) Endocytosis is required for synaptic activity-dependent release of amyloid-beta in vivo. Neuron 58:42–51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Rossi P, Buggia-Prévot V et al (2016) Predominant expression of Alzheimer’s disease-associated BIN1 in mature oligodendrocytes and localization to white matter tracts. Mol Neurodegener 11:59

    Article  PubMed  PubMed Central  Google Scholar 

  • De Rossi P, Buggia-Prévot V, Clayton BLL et al (2016) Predominant expression of Alzheimer’s disease-associated BIN1 in mature oligodendrocytes and localization to white matter tracts. Mol Neurodegener 11:59

    Article  PubMed  PubMed Central  Google Scholar 

  • De Rossi P, Andrew RJ, Musial TF et al (2019) Aberrant accrual of BIN1 near Alzheimer’s disease amyloid deposits in transgenic models. Brain Pathol 29:485–501

    Article  PubMed  Google Scholar 

  • Evergren E, Marcucci M et al (2004) Amphiphysin is a component of clathrin coats formed during synaptic vesicle recycling at the lamprey giant synapse. Traffic 5:514–528

    Article  PubMed  CAS  Google Scholar 

  • Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA, Berg S et al (2006a) Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry 63:168–174. https://doi.org/10.1001/archpsyc.63.2.168

    Article  PubMed  Google Scholar 

  • Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA, Berg S, Fiske A, Pedersen NL (2006b) Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry 63:168–174

    Article  PubMed  Google Scholar 

  • Glennon EBC, Whitehouse IJ, Miners JS, Kehoe PG, Love S, Kellett KAB et al (2013) BIN1 is decreased in sporadic but not familial Alzheimer’s disease or in aging. PLoS ONE 8:e78806. https://doi.org/10.1371/journal.pone.0078806

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Glennon EBC, Whitehouse IJ et al (2013) BIN1 is decreased in sporadic but not familial Alzheimer’s disease or in aging. PLoS ONE 8:e78806

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Glennon EB, Lau DHW, Gabriele RMC et al (2020) Bridging integrator 1 protein loss in Alzheimer’s disease promotes synaptic tau accumulation and disrupts tau release. Brain Commun 2:fcaa011

  • Glennon EB, Lau DHW, Gabriele RMC et al (2020) Bridging integrator-1 protein loss in Alzheimer’s disease promotes synaptic tau accumulation and disrupts tau release. Brain Commun 2:fcaa011

  • Gouras GK, Willén K, Tampellini D (2012) Critical role of intraneuronal Aβ in Alzheimer’s disease: technical challenges in studying intracellular Aβ. Life Sci 91:1153–1158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Holler CJ, Davis PR et al (2014) Bridging integrator 1 (BIN1) protein expression increases in the Alzheimer’s disease brain and correlates with neurofibrillary tangle pathology. J Alzheimers Dis 42:1221–1227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Holler CJ, Davis PR, Beckett TL, Platt TL, Webb RL, Head E et al (2014) Bridging integrator 1 (BIN1) protein expression increases in the Alzheimer’s disease brain and correlates with neurofibrillary tangle pathology. J Alzheimer’s Dis 42:1221–1227. https://doi.org/10.3233/JAD-132450

    Article  CAS  Google Scholar 

  • Holtzman DM, Morris JC, Goate AM (2011) Alzheimer’s disease: the challenge of the second century. Sci Transl Med 3:77sr71

  • Hu X, Pickering E, Liu YC, Hall S et al (2011) Meta-analysis for genome-wide association study identifies multiple variants at the BIN1 locus associated with late-onset Alzheimer’s disease. PLoS ONE 6:e16616

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karch CM, Jeng AT, Nowotny P et al (2012) Expression of novel Alzheimer’s disease risk genes in control and Alzheimer’s disease brains. PLoS ONE 7:e50976

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karch CM, Goate AM (2015) Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry 77(1):43–51. https://doi.org/10.1016/j.biopsych.2014.05.006

  • Kim NY, Cho MH et al (2017) Sorting nexin-4 regulates β-amyloid production by modulating β-site-activating cleavage enzyme-1. Alzheimers Res Ther 9:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Knobloch M, Konietzko U, Krebs DC, Nitsch RM (2007) Intracellular Abeta and cognitive deficits precede beta-amyloid deposition in transgenic arcAbeta mice. Neurobiol Aging 28:1297–1306

    Article  PubMed  CAS  Google Scholar 

  • Koo EH, Squazzo SL (1994) Evidence that production and release of amyloid beta-protein involves the endocytic pathway. J Biol Chem 269:17386–17389

    Article  PubMed  CAS  Google Scholar 

  • Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC et al (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 45:1452–1458

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leprince C, Le Scolan E et al (2003) Sorting nexin 4 and amphiphysin 2, a new partnership between endocytosis and intracellular trafficking. J Cell Sci 116:1937–1948

    Article  PubMed  CAS  Google Scholar 

  • Liu G, Zhang S, Cai Z, Li Y, Cui L, Ma G, Jiang Y, Zhang L, Feng R, Liao M, Chen Z, Zhao B, Li K (2013) BIN1 gene rs744373 polymorphism contributes to Alzheimer’s disease in East Asian population. Neurosci Lett 544:47–51

    Article  PubMed  CAS  Google Scholar 

  • Marques-Coelho D, Iohan L da CC, Melo de Farias AR, Flaig A, Letournel F, Martin-Négrier ML et al (2021) Differential transcript usage unravels gene expression alterations in Alzheimer’s disease human brains. NPJ Aging Mech Dis 7. https://doi.org/10.1038/s41514-020-00052-5

  • Maxfield FR, McGraw TE (2004) Endocytic recycling. Nat Rev Mol Cell Biol 5:121–132

    Article  PubMed  CAS  Google Scholar 

  • Mayer BJ, Eck MJ (1995) SH3 domains. Minding your p’s and q’s. Curr Biol 5:364–367

  • Morais VA, Leight S, Pijak DS et al (2008) Cellular localization of nicastrin affects amyloid beta species production. FEBS Lett 582:427–433

    Article  PubMed  CAS  Google Scholar 

  • Naj AC, Jun G, Beecham GW, Wang LS, Vardarajan BN et al (2011) Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet 43:436–441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nicot AS, Toussaint A, Tosch V et al (2007) Mutations in amphiphysin 2 (BIN1) disrupt interaction with dynamin 2 and cause autosomal recessive centronuclear myopathy. Nat Genet 39:1134–1139

    Article  PubMed  CAS  Google Scholar 

  • Pant S, Sharma M, Patel K et al (2009) AMPH-1/amphiphysin/Bin1 functions with RME-1/Ehd1 in endocytic recycling. Nat Cell Biol 11:1399–1410

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perdigão C, Barata MA et al (2021) Alzheimer’s disease BIN1 coding variants increase intracellular Aβ levels by interfering with BACE1 recycling. J Biol Chem 297:101056

    Article  PubMed  PubMed Central  Google Scholar 

  • Peter BJ, Kent HM, Mills IG et al (2004) BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303:495–499

    Article  PubMed  CAS  Google Scholar 

  • Safari F, Suetsugu S (2012) The BAR domain superfamily proteins from subcellular structures to human diseases. Membranes (basel) 2:91–117

    Article  PubMed  CAS  Google Scholar 

  • Sakamuro D, Elliott KJ, Wechsler-Reya R, Prendergast GC (1996) BIN1 is a novel MYC-interacting protein with features of a tumour suppressor. Nat Genet 14:69–77. https://doi.org/10.1038/ng0996-69

    Article  PubMed  CAS  Google Scholar 

  • Sannerud R, Declerck I, Peric A, Raemaekers T et al (2011) ADP ribosylation factor 6 (ARF6) controls amyloid precursor protein (APP) processing by mediating the endosomal sorting of BACE1. Proc Natl Acad Sci USA 108:E559–E568

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sannerud R, Esselens C, Ejsmont P et al (2016) Restricted location of PSEN2/γ-secretase determines substrate specificity and generates an intracellular Aβ pool. Cell 166:193–208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sartori M, Mendes T, Desai S et al (2019) BIN1 recovers tauopathy-induced long-term memory deficits in mice and interacts with tau through Thr348 phosphorylation. Acta Neuropathol 138:631–652

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seshadri S, Fitzpatrick AL, Ikram MA et al (2010) Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA 303:1832–1840

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sottejeau Y, Bretteville A, Cantrelle FX et al (2015) Tau phosphorylation regulates the interaction between BIN1’s SH3 domain and tau’s proline-rich domain. Acta Neuropathol Commun 3:58

    Article  PubMed  PubMed Central  Google Scholar 

  • Takahashi RH, Almeida CG, Kearney PF et al (2004) Oligomerization of Alzheimer’s beta-amyloid within processes and synapses of cultured neurons and brain. J Neurosci 24:3592–3599

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tan MS, Yu JT, Jiang T, Zhu XC, Guan HS, Tan L (2014a) Genetic variation in BIN1 gene and Alzheimer’s disease risk in Han Chinese individuals. Neurobiol Aging 35(1781):e1781-1788

    Google Scholar 

  • Tan MS, Yu JT, Jiang T et al (2014b) Genetic variation in BIN1 gene and Alzheimer’s disease risk in Han Chinese individuals. Neurobiol Aging 35:1781.e1-1781.e8

    Article  PubMed  CAS  Google Scholar 

  • Tan MS, Yu JT, Tan L (2013) Bridging integrator 1 (BIN1): form, function, and Alzheimer’s disease. Trends Mol Med 19:594–603

    Article  PubMed  CAS  Google Scholar 

  • Ubelmann F, Burrinha T, Salavessa L et al (2017) Bin1 and CD2AP polarise the endocytic generation of beta-amyloid. EMBO Rep 18:102–122

    Article  PubMed  CAS  Google Scholar 

  • Vardarajan BN, Ghani M, Kahn A et al (2015) Rare coding mutations identified by sequencing of Alzheimer disease genome-wide association studies loci. Ann Neurol 78:487–498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA et al (1999) Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286:735–741

    Article  PubMed  CAS  Google Scholar 

  • Voskobiynyk Y, Roth JR, Cochran JN et al (2020) Alzheimer’s disease risk gene BIN1 induces Tau-dependent network hyperexcitability. BioRxiv. https://doi.org/10.7554/eLife.57354

  • Wigge P, Köhler K et al (1997) Amphiphysin heterodimers: potential role in clathrin-mediated endocytosis. Mol Biol Cell 8:2003–2015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wijsman EM, Pankratz ND, Choi Y, Rothstein JH et al (2011) Genome-wide association of familial late-onset Alzheimer’s disease replicates BIN1 and CLU and nominates CUGBP2 in interaction with APOE. PLoS Genet 7:e1001308

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wolfe MS (2019) Dysfunctional γ-secretase in familial Alzheimer’s disease. Neurochem Res 44:5–11

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Knudsen B, Feller SM, Zheng J, Sali A, Cowburn D et al (1995) Structural basis for the specific interaction of lysine-containing proline-rich peptides with the N-terminal SH3 domain of c-Crk. Structure 3:215–226

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Keen JH (2008) Gyrating clathrin: highly dynamic clathrin structures involved in rapid receptor recycling. Traffic 9:2253–2264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

IK and TB: conceived the study and wrote the article; GS, PP, ARV, and GPS: literature review; SY and MKA: editing; AS: figure work; MG: revision; TB, NKF, and SC: proof read.

Corresponding authors

Correspondence to Tapan Behl or Sridevi Chigurupati.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

All the authors have given approval for publication of the current manuscript.

Conflict of Interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• BIN1 in Aβ accumulation: variants impact on early endosome size, Aβ profile, BACE1 and endocytic signaling.

• BIN1 in tau accumulation: impact on spine morphology and release of tau.

• BIN1 and synaptic transmission liaisons.

• Future prospects of BIN1 in AD.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, I., Behl, T., Sundararajan, G. et al. BIN1 in the Pursuit of Ousting the Alzheimer’s Reign: Impact on Amyloid and Tau Neuropathology. Neurotox Res 41, 698–707 (2023). https://doi.org/10.1007/s12640-023-00670-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-023-00670-3

Keywords

Navigation