Skip to main content
Log in

Mechano-energetic efficiency in patients with hypertrophic cardiomyopathy with and without sarcomeric mutations

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Hypertrophic cardiomyopathy (HCM) is mainly caused by sarcomeric mutations which may affect myocardial mechano-energetic efficiency (MEE). We investigated the effects of sarcomeric mutations on MEE. A non-invasive pressure/volume (P/V) analysis was performed. We included 49 genetically screened HCM patients. MEEi was calculated as the ratio between stroke volume and heart rate normalized by LV mass. Fifty-seven percent (57%) HCM patients carried a sarcomeric mutation. Patients with and without sarcomeric mutations had similar LV ejection fraction, heart rate, LV mass, and LV outflow gradient. Younger age at diagnosis, family history of HCM, and lower MEEi were associated with presence of sarcomeric mutation (p = 0.017; p = 0.001 and p = 0.0001, respectively). Lower MEEi in HCM with sarcomeric mutation is not related to significant differences on filling pressure as shown on P/V analysis. Sarcomeric mutations determine a reduction of the LV pump performance as estimated by MEEi in HCM. Lower MEEi may predict a positive genetic analysis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Maron BJ, Towbin JA, Thiene G, Antzelevitch C, Corrado D, Arnett D, Moss AJ, Seidman CE, Young JB. Contemporary definitions and classification of the cardiomyopathies. Circulation. 2006;113(14):1807–16. https://doi.org/10.1161/CIRCULATIONAHA.106.174287.

    Article  PubMed  Google Scholar 

  2. Elliott PM, Anastasakis A, Borger MA, Borggrefe M, Cecchi F, Scharron P, Hagege AA, Lofont A, Limongelli G, Mahrholdt H, et al. 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy. Eur Heart J. 2014;35(39):2733–79. https://doi.org/10.1093/eurheartj/ehu284.

    Article  PubMed  Google Scholar 

  3. Maron BJ, Desai MY, Nishimura RA, Spirito P, Rakowski H, Towbin JA, Rowin EJ, Maron MS, Sherrid MV. Diagnosis and evaluation of hypertrophic cardiomyopathy. J Am Coll Cardiol. 2022;79(4):372–89. https://doi.org/10.1016/j.jacc.2021.12.002.

    Article  PubMed  Google Scholar 

  4. Moody WE, Elliott PM. Changing concepts in heart muscle disease: the evolving understanding of hypertrophic cardiomyopathy. Heart. 2022;108(10):768–73. https://doi.org/10.1136/heartjnl-2021-320145.

    Article  PubMed  Google Scholar 

  5. Nagueh S, Chen S, Patel R, Tsybouleva N, Lutucuta S, Kopelen HA, Zoghbi WA, Quiñones MA, Roberts R, Marian AJ. Evolution of expression of cardiac phenotypes over a 4-year period in the b -myosin heavy chain-Q403 transgenic rabbit model of human hypertrophic cardiomyopathy. J Mol Cell Cardiol. 2004;36(5):663–73. https://doi.org/10.1016/j.yjmcc.2004.02.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Marian AJ, Braunwald E. Hypertrophic cardiomyopathy. Circ Res. 2017;121(7):749–70. https://doi.org/10.1161/CIRCRESAHA.117.311059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Luedde M, Flögel U, Knorr M, Grundt C, Hippe H-J, Brors B, Frank D, Haselmann U, Antony C, Voelkers M, et al. Decreased contractility due to energy deprivation in a transgenic rat model of hypertrophic cardiomyopathy. J Mol Med. 2009;87(4):411–22. https://doi.org/10.1007/s00109-008-0436-x.

    Article  CAS  PubMed  Google Scholar 

  8. Jung W-I, Sieverding L, Breuer J, Hoess T, Widmaier S, Schmidt O, Bunse M, van Erckelens F, Apitz J, Lutz O, et al. 31P NMR spectroscopy detects metabolic abnormalities in asymptomatic patients with hypertrophic cardiomyopathy. Circulation. 1998;97(25):2536–42. https://doi.org/10.1161/01.CIR.97.25.2536.

    Article  CAS  PubMed  Google Scholar 

  9. Juszczyk A, Jankowska K, Zawiślak B, Surdacki A, Chyrchel B. Depressed cardiac mechanical energetic efficiency: a contributor to cardiovascular risk in common metabolic diseases—from mechanisms to clinical applications. J Clin Med. 2020;9(9):2681. https://doi.org/10.3390/jcm9092681.

    Article  PubMed  PubMed Central  Google Scholar 

  10. de Simone G, Chinali M, Galderisi M, Benincasa M, Girfoglio D, Botta I, D’Addeo G, de Divitiis O. Myocardial mechano-energetic efficiency in hypertensive adults. J Hypertens. 2009;27(3):650–5. https://doi.org/10.1097/HJH.0b013e328320ab97.

    Article  CAS  PubMed  Google Scholar 

  11. Crilley JG, Boehm EA, Blair E, Rajagopalan B, Blamire AM, Styles P, McKenna WJ, Östman-Smith I, Clarke K, Watkins H. Hypertrophic cardiomyopathy due to sarcomeric gene mutations is characterized by impaired energy metabolism irrespective of the degree of hypertrophy. J Am Coll Cardiol. 2003;41(10):1776–82. https://doi.org/10.1016/S0735-1097(02)03009-7.

    Article  CAS  PubMed  Google Scholar 

  12. Bastos MB, Burkhoff D, Maly J, Daemen J, den Uil CA, Ameloot K, Lenzen M, Mahfoud F, Zijlstra F, Schreuder JJ, et al. Invasive left ventricle pressure–volume analysis: overview and practical clinical implications. Eur Heart J. 2020;41(12):1286–97. https://doi.org/10.1093/eurheartj/ehz552.

    Article  PubMed  Google Scholar 

  13. Burkhoff D, Mirsky I, Suga H. Assessment of systolic and diastolic ventricular properties via pressure-volume analysis: a guide for clinical, translational, and basic researchers. Am J Physiol-Heart Circulatory Physiol. 2005;289(2):H501–12. https://doi.org/10.1152/ajpheart.00138.2005.

    Article  CAS  Google Scholar 

  14. World Medical Association. Declaration of Helsinki. JAMA. 2013;310(20):2191. https://doi.org/10.1001/jama.2013.281053.

    Article  CAS  Google Scholar 

  15. Maurizi N, Rella V, Fumagalli C, Salerno S, Castelletti S, Dagradi F, Torchio M, Marceca A, Meda M, Gasparini M, et al. Prevalence of cardiac amyloidosis among adult patients referred to tertiary centres with an initial diagnosis of hypertrophic cardiomyopathy. Int J Cardiol. 2020;300:191–5. https://doi.org/10.1016/j.ijcard.2019.07.051.

    Article  PubMed  Google Scholar 

  16. Mazzaccara C, Lombardi R, Mirra B, Barretta F, Esposito MV, Uomo F, Caiazza M, Monda E, Losi MA, Limongelli G, et al. Next-generation sequencing gene panels in inheritable cardiomyopathies and channelopathies: prevalence of pathogenic variants and variants of unknown significance in uncommon genes. Biomolecules. 2022;12(10):1417. https://doi.org/10.3390/biom12101417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24. https://doi.org/10.1038/gim.2015.30.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hershberger RE, Givertz MM, Ho CY, Judge DP, Kantor PF, McBride KL, Morales A, Taylor MRG, Vatta M, Ware SM. Genetic evaluation of cardiomyopathy: a clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2018;20(9):899–909. https://doi.org/10.1038/s41436-018-0039-z.

    Article  PubMed  Google Scholar 

  19. Betocchi S, Piscione F, Losi MA, Pace L, Boccalatte M, Perrone-Filardi P, Cappelli-Bigazzi M, Briguori C, Manganelli F, Ciampi Q, et al. Effects of diltiazem on left ventricular systolic and diastolic function in hypertrophic cardiomyopathy. Am J Cardiol. 1996;78(4):451–7. https://doi.org/10.1016/s0002-9149(96)00336-0.

    Article  CAS  PubMed  Google Scholar 

  20. Pollick C, Morgan CD, Gilbert BW, Rakowski H, Wigle ED. Muscular subaortic stenosis: the temporal relationship between systolic anterior motion of the anterior mitral leaflet and the pressure gradient. Circulation. 1982;66(5):1087–94. https://doi.org/10.1161/01.CIR.66.5.1087.

    Article  CAS  PubMed  Google Scholar 

  21. Panza JA, Maris TJ, Maron BJ. Development and determinants of dynamic obstruction to left ventricular outflow in young patients with hypertrophic cardiomyopathy. Circulation. 1992;85(4):1398–405. https://doi.org/10.1161/01.CIR.85.4.1398.

    Article  CAS  PubMed  Google Scholar 

  22. Vanoverschelde JL, Wijns W, Essamri B, Bol A, Robert A, Labar D, Cogneau M, Michel C, Melin JA. Hemodynamic and mechanical determinants of myocardial O2 consumption in normal human heart: effects of dobutamine. Am J Physiol-Heart Circulatory Physiol. 1993;265(6):H1884–92. https://doi.org/10.1152/ajpheart.1993.265.6.H1884.

    Article  CAS  Google Scholar 

  23. Losi MA, Izzo R, Mancusi C, Wang W, Roman MJ, Lee ET, Howard BV, Devereux RB, de Simone G. Depressed myocardial energetic efficiency increases risk of incident heart failure: the Strong Heart Study. J Clin Med. 2019;8(7):1044. https://doi.org/10.3390/jcm8071044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. de Simone G, Izzo R, Losi MA, Stabile E, Rozza F, Canciello G, Mancusi C, Trimarco V, De Luca N, Trimarco B. Depressed myocardial energetic efficiency is associated with increased cardiovascular risk in hypertensive left ventricular hypertrophy. J Hypertens. 2016;34(9):1846–53. https://doi.org/10.1097/HJH.0000000000001007.

    Article  CAS  PubMed  Google Scholar 

  25. Mancusi C, Losi MA, Izzo R, Canciello G, Manzi MV, Sforza A, De Luca N, Trimarco B, de Simone G. Effect of diabetes and metabolic syndrome on myocardial mechano-energetic efficiency in hypertensive patients. The Campania Salute Network. J Hum Hypertens. 2017;31:395–9. https://doi.org/10.1038/jhh.2016.88.

    Article  CAS  PubMed  Google Scholar 

  26. Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, Reichek N. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol. 1986;57(6):450–8. https://doi.org/10.1016/0002-9149(86)90771-X.

    Article  CAS  PubMed  Google Scholar 

  27. Losi MA, Imbriaco M, Canciello G, Pacelli F, Di Nardo C, Lombardi R, Izzo R, Mancusi C, Ponsiglione A, Dell’Aversana S, et al. Left ventricular mass in hypertrophic cardiomyopathy assessed by 2D-echocardiography: validation with magnetic resonance imaging. J Cardiovasc Transl Res. 2020;13(2):238–44. https://doi.org/10.1007/s12265-019-09911-3.

    Article  PubMed  Google Scholar 

  28. Cioffi G, Battiston R, Mancusi C, Di Lenarda A, Faganello G, Aurigemma GP, Tarantini L, Pulignano G, Cioffi V, de Simone G. Prognostic stratification of clinically stable patients with heart failure by echocardiographic pressure/volume loop model. J Am Soc Echocardiography. 2023; https://doi.org/10.1016/j.echo.2023.02.006.

  29. Ferrara F, Capone V, Cademartiri F, Vriz O, Cocchia R, Ranieri B, Franzese M, Castaldo R, D’Andrea A, Citro R, et al. Physiologic range of myocardial mechano-energetic efficiency among healthy subjects: impact of gender and age. J Pers Med. 2022;12(6):996. https://doi.org/10.3390/jpm12060996.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ingles J, Goldstein J, Thaxton C, Caleshu C, Corty EW, Crowley SB, Dougherty K, Harriso SM, McGlaughon J, Milko LV, et al. Evaluating the clinical validity of hypertrophic cardiomyopathy genes. Circ Genom Precis Med. 2019;12(2):e002460. https://doi.org/10.1161/CIRCGEN.119.002460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Walsh R, Offerhaus JA, Tadros R, Bezzina CR. Minor hypertrophic cardiomyopathy genes, major insights into the genetics of cardiomyopathies. Nat Rev Cardiol. 2022;19(3):151–67. https://doi.org/10.1038/s41569-021-00608-2.

    Article  PubMed  Google Scholar 

  32. Grossman W, Jones D, McLaurin LP. Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest. 1975;56(1):56–64. https://doi.org/10.1172/JCI108079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lankford EB, Epstein ND, Fananapazir L, Sweeney HL. Abnormal contractile properties of muscle fibers expressing beta-myosin heavy chain gene mutations in patients with hypertrophic cardiomyopathy. J Clin Invest. 1995;95(3):1409–14. https://doi.org/10.1172/JCI117795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Maron MS. Clinical utility of cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J Cardiovasc Magn Reson. 2012;14(1):13. https://doi.org/10.1186/1532-429X-14-13.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ashrafian H, Redwood C, Blair E, Watkins H. Hypertrophic cardiomyopathy: a paradigm for myocardial energy depletion. Trends Genet. 2003;19(5):263–8. https://doi.org/10.1016/S0168-9525(03)00081-7.

    Article  CAS  PubMed  Google Scholar 

  36. Witjas-Paalberends ER, Güçlü A, Germans T, Knaapen P, Harms HJ, Vermeer AMC, Christiaans I, Wilde AAM, Dos Remedios C, Lammertsma AA, et al. Gene-specific increase in the energetic cost of contraction in hypertrophic cardiomyopathy caused by thick filament mutations. Cardiovasc Res. 2014;103(2):248–57. https://doi.org/10.1093/cvr/cvu127.

    Article  CAS  PubMed  Google Scholar 

  37. Neubauer S, Kolm P, Ho CY, Kwong RY, Desai MY, Dolman SF, Appelbaum E, Desvigne-Nickens P, DiMarco JP, Friedrich MG, et al. Distinct subgroups in hypertrophic cardiomyopathy in the NHLBI HCM Registry. J Am Coll Cardiol. 2019;74(19):2333–45. https://doi.org/10.1016/j.jacc.2019.08.1057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Watkins H. Time to think differently about sarcomere-negative hypertrophic cardiomyopathy. Circulation. 2021;143(25):2415–7. https://doi.org/10.1161/CIRCULATIONAHA.121.053527.

    Article  PubMed  Google Scholar 

  39. Harper AR, Goel A, Grace C, Thomson KL, Petersen SE, Xu X, Waring A, Ormondroyd E, Kramer CM, Ho CY, et al. Common genetic variants and modifiable risk factors underpin hypertrophic cardiomyopathy susceptibility and expressivity. Nat Genet. 2021;53(2):135–42. https://doi.org/10.1038/s41588-020-00764-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sweeney HL, Feng HS, Yang Z, Watkins H. Functional analyses of troponin T mutations that cause hypertrophic cardiomyopathy: insights into disease pathogenesis and troponin function. Pro Nat Acad Sci. 1998;95(24):14406–10. https://doi.org/10.1073/pnas.95.24.14406.

    Article  CAS  Google Scholar 

  41. Wang Y, Zhang L, Liu J, Yue X, Shi H, Li Y, Xie M, Lv Q. Automated three-dimensional echocardiographic quantification for left ventricular volume and function in patients with hypertrophic cardiomyopathy. Echocardiography. 2022;39(5):658–66. https://doi.org/10.1111/echo.15322.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria-Angela Losi.

Additional information

Associate Editor Paul Barton oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 15 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borrelli, F., Lombardi, R., Canciello, G. et al. Mechano-energetic efficiency in patients with hypertrophic cardiomyopathy with and without sarcomeric mutations. J. of Cardiovasc. Trans. Res. 17, 458–466 (2024). https://doi.org/10.1007/s12265-023-10441-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-023-10441-2

Keywords

Navigation