Skip to main content
Log in

Study of the Characteristics and Parameters of Plasma of Overvoltage Nanosecond Discharge in Krypton between the Electrodes of a Superionic Conductor—Silver Sulphide

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The results of a study into the electrical and optical characteristics of an overvoltage nanosecond atmospheric pressure discharge between electrodes made of a superionic conductor (SIC) (Ag2S) in krypton are presented. The destruction of electrodes in the discharge and the introduction of Ag2S vapor into the interelectrode gap occurred due to the microexplosions of inhomogeneities on the working surfaces of polycrystalline electrodes (the formation of ectons) in order to synthesize thin films based on this compound on the surface of a dielectric substrate mounted near the electrodes. Numerically solving the Boltzmann kinetic equation for the electron energy distribution function, the temperature and the electron density in the discharge, the specific discharge power losses for the main electronic processes, and the rate constants of the electronic processes depending on the parameter E/N for the plasma of vapor-gas mixtures based on krypton and silver sulfide have been calculated. Homogeneous thin films based on silver sulfide are synthesized on the quartz substrates by the gas-discharge method under conditions of ultraviolet assisted discharge plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Tolstoguzov, A.B., Belykh, S.F., Gololobov, G.P., Gurov, V.S., et al., Ion-beam sources based on solid electrolytes for aerospace applications and ion-beam technologies (review), Instrum. Exp. Techn., 2018, vol. 61, p. 159. https://doi.org/10.1134/S0020441218020100

    Article  Google Scholar 

  2. Shuaibov, A.K., Minya, A.Y., Malinina, A.A., Malinin, A.N., et al., Study into synchronous flows of bactericidal ultraviolet radiation and transition oxides metals (Zn, Cu, Fe) in a pulsed gas discharge overvoltage reactor nanosecond discharge in the air, Surf. Eng. Appl. Electrochem., 2020, vol. 56, no. 4, p. 510. https://doi.org/10.3103/S106837552004016X

    Article  Google Scholar 

  3. Shuaibov, O.K., Minya, O.Y., Malinina, A.O., Malinin, O.M., et al., Electroluminescence of aluminium-oxides nanoparticles in overstressed nanosecond discharge plasma in high-pressure air, Nanosistemy, Nanomaterialy, Nanotehnologii, 2021, vol. 19, no. 1, p. 189.

    Google Scholar 

  4. Shuaibov, A.K., Minya, A.Y., Hrytsak, R.V., Malinina, A.A., et al., Characteristics of an overstressed discharge of nanosecond duration between electrodes of chalcopyrite in high pressure nitrogen, Adv. Nanosci. Nanotechnol., 2020, vol. 4, no. 1, p. 1. https://doi.org/10.33140/ANN.04.01.01

  5. Shuaibov, A.K., Minya, A.I., Malinina, A.A., Gritsak, R.V., et al., Characteristics and parameters of overstressed nanosecond discharge plasma in air between an electrode from aluminum and electrode from chalcopyrite (CuInSe2), Elektron. Obrab. Mater., 2021, vol. 57, no. 5, p. 34. https://doi.org/10.52577/eom.2021.57.5.34

    Article  Google Scholar 

  6. Tominaga, K., Umezu, N., Mori, I., Ushiro, T., et al., Effects of UV light irradiation and excess Zn addition on ZnO:Al film properties in sputtering process, Thin Solid Films, 1998, vol. 316, p. 85. https://doi.org/10.1016/S0040-6090(98)00394-0

    Article  Google Scholar 

  7. Mesyats, G.A., Ecton or electron avalanche from metal, Phys.-Usp., 1995, vol. 165, no. 6, p. 601. https://doi.org/10.1070/PU1995v038n06ABEH000089

    Article  Google Scholar 

  8. Shuaibov, O.K. and Malinina, A.O., Overstressed nanosecond discharge in the gases at atmospheric pressure and its application for the synthesis of nanostructures based on transition metals, Progr. Phys. Metals, 2021, vol. 22, no. 3, p. 382. https://doi.org/10.15407/ufm.22.03.382

    Article  Google Scholar 

  9. Tarasenko, V.F., Runaway Electrons Preionized Diffuse Discharge, New York: Nova Science, 2014.

    Google Scholar 

  10. Striganov, A.R. and Sventitskii, N.S., Tables of Spectral Lines of Neutral and Ionized Atoms, New York: Springer, 1968. https://doi.org/10.1007/978-1-4757-6610-3

    Book  Google Scholar 

  11. NIST Atomic Spectra Database Lines Form. https://physics.nist.gov/PhysRefData/ASD/lines_form.html.

  12. Shuaibov, O.K., Gritsak, R.V., and Romanets’, R.P., Emission characteristics of a nanosecond discharge plasma in air between electrodes from a superionic conductor (Ag2S), The III Int. Scientific and Practical Conf. “Modern challenges to science and practice,” Varna, Bulgaria, January 24–26, 2022, p. 483.

  13. BOLSIG+. Electron Boltzmann equation solver. http:/www.bolsig.laplace.univ-tlse.fr.

  14. Smirnov, Yu.M., Electron-impact excitation of triplet levels of the zinc atom, Opt. Spectrosc., 2008, vol. 104, no. 2, p. 159. https://doi.org/10.1134/S0030400X08020021

    Article  Google Scholar 

  15. Dhanoj Gupta, Rahla Naghma, and Bobby Antony, Electron impact total and ionization cross sections for Sr, Y, Ru, Pd, and Ag atoms, Can. J. Phys., 2013, vol. 91, no. 9, p. 744. https://doi.org/10.1139/cjp-2013-0174

    Article  Google Scholar 

  16. Smirnov, Yu.M., Excitation of CuII and AgII in electron–atom collisions, Quantum Electron., 1999, vol. 29, p. 1006. https://doi.org/10.1070/QE1999v029n11ABEH001624

    Article  Google Scholar 

  17. Raizer, Yu.P., Gas Discharge Physics, Berlin: Springer-Verlag, 1991.

    Book  Google Scholar 

  18. Malinina, A.O., Shuaibov, O.K., Malinin, O.M., and Bilak, Yu.Yu., Parameters of pulsed gas-discharge plasma based on gas-vapor mixture “krypton–silver sulfide,” Jubilee Conference “30 Years of the Institute of Electronic Physics of the National Academy of Sciences of Ukraine,” Uzhhorod, September 21–23, 2022, p. 142.

  19. Martina, I., Wiesinger, R., Jembrih-Simburger, D., and Schreiner, M., Micro-Raman characterisation of silver corrosion products: Instrumental set up and reference database, e-PS, 2012, vol. 9, p. 1.

  20. Sadovnikov, S.I., Vovkotrub, E.G., and Rempel, A.A., Micro-Raman spectroscopy of nanostructured silver sulfide, Dokl. Phys. Chem., 2018, vol. 480, p. 81. https://doi.org/10.1134/S0012501618060027

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Shuaibov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Myshkina

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shuaibov, A.K., Minya, A.I., Gritsak, R.V. et al. Study of the Characteristics and Parameters of Plasma of Overvoltage Nanosecond Discharge in Krypton between the Electrodes of a Superionic Conductor—Silver Sulphide. Surf. Engin. Appl.Electrochem. 59, 649–660 (2023). https://doi.org/10.3103/S1068375523050162

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375523050162

Keywords:

Navigation