Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T22:39:08.761Z Has data issue: false hasContentIssue false

A re-evaluation of stannopalladinite using modern analytical techniques

Published online by Cambridge University Press:  20 September 2023

Anatoly V. Kasatkin*
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071, Moscow, Russia
Anna Vymazalová
Affiliation:
Czech Geological Survey, Geologická 6, 152 00, Prague, Czech Republic
Fabrizio Nestola
Affiliation:
Department of Geosciences, University of Padova, Via Gradenigo 6, I-35131, Padova, Italy
Vladislav V. Gurzhiy
Affiliation:
Department of Crystallography, Institute of Earth Sciences, St. Petersburg State University, University Embankment 7/9, 199034, Saint-Petersburg, Russia
Atali A. Agakhanov
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071, Moscow, Russia
Radek Škoda
Affiliation:
Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
Dmitry I. Belakovskiy
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071, Moscow, Russia
Mikhail E. Generalov
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071, Moscow, Russia
*
Corresponding author: Anatoly V. Kasatkin; Email: anatoly.kasatkin@gmail.com

Abstract

An investigation of sample 41647 from the Platinum Placer of Ugol'nyi Ruchei, Norilsk Cu–Ni deposit, Russia, stored in the systematic collection of the Fersman Mineralogical Museum, revealed that it contained a mineral that can be identified as the original stannopalladinite described in 1947. As the literature information on the latter is controversial, the mineral was re-investigated using modern analytical techniques. Stannopalladinite occurs as spherical and ovoid-shaped grains up to 0.08 mm, closely intergrown with tetraferroplatinum as part of flattened, prismatic crystals up to 6 mm long. The micro-indentation hardness of stannopalladinite (VHN, 30 g load) is 244 kg/mm2 (range 233–266, n = 4), corresponding to a Mohs hardness of 4. The calculated density is 9.781 g/cm3. In reflected light, stannopalladinite is pale pink. The bireflectance is noticeable only in oil immersion. In crossed nicols the mineral exhibits strong anisotropy with colour effects changing from reddish purple to greyish blue and polysynthetic twinning of grains. The reflectance curves show distinct anomalous dispersion. The chemical composition (wt.%, electron microprobe data, mean of 11 analyses) is: Cu 8.48, Pd 61.21, Pt 0.89, Sn 25.87, Pb 3.70, total 100.15. The empirical formula calculated on the basis of 4 atoms per formula unit is (Pd2.42Cu0.56Pt0.02)Σ3.00(Sn0.92Pb0.08)Σ1.00. The ideal chemical formula of stannopalladinite is therefore proposed as (Pd,Cu)3Sn instead of Pd3Sn2 used in the official IMA List of Minerals. The strongest powder X-ray diffraction lines are [dobs, Å (I, %) (hkl) ]: 2.292 (42) (231), 2.166 (100) (331), 2.034 (10) (710), 1.916 (15) (141) and 1.851 (15) (630). The powder X-ray data are indexed in the orthorhombic unit cell with a = 14.634(2), b = 8.5253(6), c = 4.5946(3) Å and V = 573.24(7) Å3 (Z = 8). Stannopalladinite can be reliably identified among all other minerals belonging to the binary Pd–Sn and ternary Pd–Cu–Sn systems by a combination of chemical, optical and X-ray data.

Type
Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Ian Terence Graham

References

Begizov, V.D., Zavyalov, E.N. and Pavlov, E.G. (1982) New data on taimyrite, (Pd,Cu,Pt)3Sn from copper-nickel ores of the Talnakh deposit. Zapiski VMO, 1, 7883 [in Russian].Google Scholar
Berry, L.G. and Thompson, R.M. (1962) X-ray powder data for ore minerals: the Peacock Atlas. New York. Geological Society of America Memoir, 85, 1281.10.1130/MEM85-p1CrossRefGoogle Scholar
Cabri, L.J. (1972) The mineralogy of the platinum-group elements. Minerals Science and Engineering, 4, 329.Google Scholar
Cabri, L.J. (1981) The platinum-group minerals. Pp. 83–150 in: Platinum Group Elements: Mineralogy, Geology, Recovery (Cabri, L.J., editor). Canadian Institute of Mining, Metallurgy and Petroleum, Special Volume 23. CIM, Quebec, Canada.Google Scholar
Cabri, L.J. (2002) The platinum-group minerals. Pp. 177–210 in: The Geology, Geochemistry, Mineralogy and Mineral Beneficiation of Platinum-Group Elements (Cabri, L.J., editor). Canadian Institute of Mining, Metallurgy and Petroleum, Special Volume 54. CIM, Quebec, Canada.Google Scholar
Chernyaev, L.A. and Yushko-Zakharova, O.E. (1968) Diagnosis of micro-inclusions of minerals of the platinum group by means of the JXA-3A X-ray spectrographic microanalyzer. Pp. 80–101 in: Physical Properties of Rare-Metal Minerals and Methods for their Study. Nauka, Moscow [in Russian].Google Scholar
Dunn, P.J. and Mandarino, J.A. (1987) Formal definitions of type mineral specimens. The Canadian Mineralogist, 25, 571572.Google Scholar
Evstigneeva, T.L. (1980) Natural and synthetic compounds in the system Pd–Sn–Cu. Pp. 184–191 in: Suplhosalts, Platinum Minerals and Ore Microscopy. Proceedings of the XI General Meeting of IMA, Novosibirsk, 4–10 September 1978. Nauka, Moscow [in Russian].Google Scholar
Evstigneeva, T.L. and Genkin, A.D. (1983) Cabriite, Pd2SnCu, a new mineral species in the mineral group of palladium, tin and copper compounds. The Canadian Mineralogist, 21, 481487.Google Scholar
Evstigneeva, T.L. and Nekrasov, I.Ya. (1980) Phase synthesis conditions and phase relationships in the Pd3Sn–Pd3Cu and Pd–Sn–Cu–HCl systems. Pp. 20–35 in: Essays on Physicochemical Petrology. Vol. IX. Nauka, Moscow [in Russian].Google Scholar
Evstigneeva, T.L. and Nekrasov, I.Ya. (1984) Сonditions for the formation of tin-bearing minerals of platinum metals of the Pd–Cu–Sn system and its partial cross sections. Pp. 143–170 in: Nekrasov I.Ya. Tin in Magmatic and Postmagmatic Processes. Nauka, Moscow [in Russian].Google Scholar
Generalov, M.E. and Pautov, L.A. (2005) Platinum of the Ugolnyi stream (Norilsk) from the Fersman mineralogical museum collection. New Data on Minerals, 40, 120124.Google Scholar
Genkin, A.D. (1968) Minerals of platinum metals and their associations in copper-nickel ores of Norilsk deposit. Nauka, Moscow, 106 pp. [in Russian].Google Scholar
Genkin, A.D., Evstigneeva, T.L., Vyalsov, L.N., Laputina, I.P. and Troneva, N.V. (1974) Paolovite – Pd2Sn – a new mineral from copper-nickel sulfide ores. Geology of Ore Deposits, 16, 98103 [in Russian].Google Scholar
Genkin, A.D., Distler, V.V., Gladyshev, G.D., Filimonova, A.A., Evstigneeva, T.L., Kovalenker, V.A., Laputina, I.P., Smirnov, A.V. and Grokhovskaya, T.L. (1981) Sulfide copper-nickel ores of Norilsk deposit. Nauka, Moscow, 235 pp [in Russian].Google Scholar
Kareva, M.A., Kabanova, E.G., Kalmykov, K.B., Zhmurko, G.P. and Kuznetsov, V.N. (2014) Isothermal sections of the Pd–Cu–Sn system at 500 and 800°C. Journal of the Phase Equilibria and Diffusion, 35, 413420.CrossRefGoogle Scholar
Krivolutskaya, N., Tolstykh, N., Kedrovskaya, T., Naumov, K., Kubrakova, I., Tyutyunnik, O., Gongalsky, B., Kovalchuk, E., Magazina, L., Bychkova, Y. and Yakushev, A. (2018) World-class PGE-Cu-Ni Talnakh Deposit: New data on the structure and unique mineralization of the South-Western Branch. Minerals, 8, 124.CrossRefGoogle Scholar
Maslenitskiy, I.N. (1948) New platinum group minerals in sulfide copper-nickel ores. Zapiski Leningradskogo Gornogo Instituta, 22, 199211 [in Russian].Google Scholar
Maslenitskiy, I.N., Faleev, P.V. and Iskyul, E.V. (1947) Tin-bearing minerals of the platinum group in sulfide copper-nickel ores. Doklady Akademii Nauk USSR, 58, 11371140 [in Russian].Google Scholar
Merlet, C. (1994) An accurate computer correction program for quantitative electron probe Microanalysis. Microchimica Acta, 114/115, 363376.CrossRefGoogle Scholar
Mihálik, P., Hiemstra, S.A. and de Villiers, J.P.R. (1975) Rustenburgite and atokite, two new platinum-group minerals from the Merensky Reef, Bushveld Igneous Complex. The Canadian Mineralogist, 13, 146150.Google Scholar
Nowotny, H., Schubert, K. and Dettinger, U. (1946) Zur Kenntnis des Aufbaus unde der Kristallchemie einiger Edelmetallsysteme (Palladium-Blei, Palladium-Zinn, Ridium-Zinn, Rhodium-Zinn, Platinum-Blei). Metallforschung, 1, 137145 [in German].Google Scholar
Pasero, M. (2023) The New IMA List of Minerals. International Mineralogical Association. Commission on New Minerals, Nomenclature and Classification (IMA-CNMNC), http://cnmnc.main.jp/.Google Scholar
Sarah, N., Alasafi, K. and Schubert, K. (1981) Kristallstruktur von Pd20Sn13, Pd6AgPb4 und Ni13ZnGe8. Zeitschrift für Metallkunde, 72, 517520 [in German].Google Scholar
Schubert, K., Lukas, H.L., Bhan, S. and Meissner, H.G. (1959) Zum Aufbau der Systeme Co–Ga, Pd–Ga, Pd–Sn und verwandter Legierungen. Zeitschrift für Metallkunde, 50, 534540 [in German].Google Scholar
Spiridonov, E.M., Korotayeva, N.N., Kulikova, I.M., Mashkina, A.A. and Zhukov, N.N. (2011) Palladoarsenide Pd2As – a product of majakite PdNiAs destruction in Norilsk sulfide ores. New Data on Minerals, 46, 4854.Google Scholar
Tolstykh, N., Krivolutskaya, N., Safonova, I., Shapovalova, M., Zhitova, L. and Abersteiner, A. (2020) Unique Cu-rich sulphide ores of the Southern-2 orebody in the Talnakh Intrusion, Noril'sk area (Russia): Geochemistry, mineralogy and conditions of crystallization. Ore Geology Reviews, 122, 103525.CrossRefGoogle Scholar
Vyalsov, L.N. (1973) Reflectance Spectra of Ore Minerals. IGEM, Moscow, 67 pp. [in Russian].Google Scholar