Skip to main content
Log in

The balanced metrics and cscK metrics on polyball bundles

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we use the the well-known Calabi ansatz, further generalized by Hwang–Singer and Apostolov–Calderbank–Gauduchon, to study the existence of constant scalar curvature Kähler (cscK for short) metrics and balanced metrics on certain holomorphic polyball bundles M which are locally expressed as \(M=\Big \{(z_1,\ldots ,z_{{\mathcal {N}}}, u_1,\ldots ,u_{\ell })\in \prod _{j=1}^{{\mathcal {N}}}\Omega _j \times \prod _{i=1}^{\ell }{\mathbb {C}}^{r_i}: e^{\sum _{j=1}^{{\mathcal {N}}}\lambda _{ij}\phi _j(z_j)}\Vert u_i\Vert ^2<1,1\le i\le \ell \Big \}.\) Let \(g_F\) be the natural Kähler metrics on M associated with the Kähler forms locally expressed as \(\omega _F=\sqrt{-1}\partial \overline{\partial } \Big (\sum _{j=1}^{{\mathcal {N}}}\nu _j\phi _j(z_j) +\sum _{i=1}^{\ell }f_i(\sum _{j=1}^{{\mathcal {N}}} \lambda _{ij}\phi _j(z_j)+\log \Vert u_i\Vert ^2)\Big )\). Firstly, we obtain sufficient and necessary conditions for \(g_F\) to be cscK metrics. Secondly, using this result, we obtain necessary and sufficient conditions for \(mg_F\) to be balanced metrics for all sufficiently large positive integer numbers m. Finally, we obtain complete cscK metrics and balanced metrics on the polyball bundles over simply connected Riemann surfaces, or products of simply connected Riemannian surfaces and unit balls. The main contribution of this paper is the explicit construction of complete, non-compact cscK metrics and balanced metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Aghedu, F.C., Loi, A.: The Simanca metric admits a regular quantization. Ann. Global Anal. Geom. 56(3), 583–596 (2019)

    MathSciNet  MATH  Google Scholar 

  2. Apostolov, V., Calderbank, D., Gauduchon, P.: Hamiltonian 2-forms in Kähler geometry. I general theory. J. Differ. Geom. 73, 359–412 (2006)

    MATH  Google Scholar 

  3. Arezzo, C., Loi, A.: Moment maps, scalar curvature and quantization of Kähler manifolds. Commun. Math. Phys. 243, 543–559 (2004)

    MATH  Google Scholar 

  4. Arezzo, C., Loi, A., Zuddas, F.: On homothetic balanced metrics. Ann. Global Anal. Geom. 41(4), 473–491 (2012)

    MathSciNet  MATH  Google Scholar 

  5. Berceanu, S.: Balanced metric and Berezin quantization on the Siegel–Jacobi ball. Symmetry, Integr. Geom.: Methods Appl. 064, 28 (2016)

  6. Berezin, F.A.: Quantization. Math. USSR Izvestiya 8, 1109–1163 (1974)

    MATH  Google Scholar 

  7. Berman, R., Berndtsson, B., Sjöstrand, J.: A direct approach to Bergman kernel asymptotics for positive line bundles. Ark. Mat. 46(2), 197–217 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Bi, E.C., Feng, Z.M., Su, G.C., Tu, Z.H.: Rawnsley’s \(\varepsilon \)-function on some Hartogs type domains over bounded symmetric domains and its applications. J. Geom. Phys. 135, 187–203 (2019)

    MathSciNet  MATH  Google Scholar 

  9. Bi, E.C., Feng, Z.M., Tu, Z.H.: Balanced metrics on the Fock–Bargmann–Hartogs domains. Ann. Global Anal. Geom. 49, 349–359 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Bi, E.C., Su, G.C.: Balanced metrics and Berezin quantization on Hartogs triangles. Ann. di Matematica Pura ed Appl. (1923-) 200, 273–285 (2021)

    MathSciNet  MATH  Google Scholar 

  11. Cahen, M., Gutt, S., Rawnsley, J.: Quantization of Kähler manifolds. I: geometric interpretation of Berezin’s quantization. J. Geom. Phys. 7, 45–62 (1990)

    MathSciNet  MATH  Google Scholar 

  12. Cahen, M., Gutt, S., Rawnsley, J.: Quantization of Kähler manifolds II. Trans. Am. Math. Soc. 337, 73–98 (1993)

    MATH  Google Scholar 

  13. Catlin, D.: The Bergman Kernel and a Theorem of Tian. Analysis and Geometry in Several Complex Variables (Katata, 1997), Trends Math., Birkhäuser Boston, Boston, MA, pp. 1–23 (1999)

  14. Cuccu, F., Loi, A.: Balanced metrics on \({\mathbb{C} }^n\). J. Geom. Phys. 57(4), 1115–1123 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Dai, X., Liu, K., Ma, X.: On the asymptotic expansion of Bergman kernel. J. Differ. Geom. 72, 1–41 (2006)

    MathSciNet  MATH  Google Scholar 

  16. Donaldson, S.: Scalar curvature and projective embeddings. I. J. Differ. Geom. 59, 479–522 (2001)

    MathSciNet  MATH  Google Scholar 

  17. Engliš, M.: Berezin quantization and reproducing kernels on complex domains. Trans. Am. Math. Soc. 348, 411–479 (1996)

    MathSciNet  MATH  Google Scholar 

  18. Engliš, M.: Weighted Bergman kernels and balanced metrics. RIMS Kokyuroku 1487, 40–54 (2006)

    Google Scholar 

  19. Engliš, M.: A Forelli–Rudin construction and asymptotics of weighted Bergman kernels. J. Funct. Anal. 177, 257–281 (2000)

    MathSciNet  MATH  Google Scholar 

  20. Engliš, M.: The asymptotics of a Laplace integral on a Kähler manifold. J. Reine Angew. Math. 528, 1–39 (2000)

    MathSciNet  MATH  Google Scholar 

  21. Engliš, M.: Uniqueness of smooth radial balanced metrics on the disc. Complex Var. Elliptic Equ. 64(3), 519–540 (2019)

    MathSciNet  MATH  Google Scholar 

  22. Feng, Z.M.: On the first two coefficients of the Bergman function expansion for radial metrics. J. Geom. Phys. 119, 256–271 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Feng, Z.M.: The first two coefficients of the Bergman function expansions for Cartan–Hartogs domains. Int. J. Math. 29, 1850043 (2018)

    MathSciNet  MATH  Google Scholar 

  24. Feng, Z.M.: The regular quantizations of certain holomorphic bundles. Ann. Global Anal. Geom. 57, 95–120 (2020)

    MathSciNet  MATH  Google Scholar 

  25. Feng, Z.M., Tu, Z.H.: On canonical metrics on Cartan–Hartogs domains. Math. Z. 278, 301–320 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Feng, Z.M., Tu, Z.H.: Balanced metrics on some Hartogs type domains over bounded symmetric domains. Ann. Global Anal. Geom. 47(4), 305–333 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Feng, Z.M., Tu, Z.H.: The balanced metrics and cscK metrics on certain holomorphic ball bundles. J. Geom. Phys. 174, 104452 (2022)

    MathSciNet  MATH  Google Scholar 

  28. Fu, J., Yau, S.-T., Zhou, W.: Complete cscK metrics on the local models of the conifold transition. Commun. Math. Phys. 335, 1215–1233 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Fu, J., Yau, S.-T., Zhou, W.: On complete cscK metrics with Poincaré–Mok–Yau asymptotic property. Commum. Anal. Geom. 24(3), 521–557 (2016)

    MATH  Google Scholar 

  30. Greco, A., Loi, A.: Radial balanced metrics on the unit disk. J. Geom. Phys. 60(1), 53–59 (2010)

    MathSciNet  MATH  Google Scholar 

  31. Hsiao, C.Y.: On the coefficients of the asymptotic expansion of the kernel of Berezin–Toeplitz quantization. Ann. Global Anal. Geom. 42(2), 207–245 (2012)

    MathSciNet  MATH  Google Scholar 

  32. Hsiao, C.Y., Marinescu, G.: Asymptotics of spectral function of lower energy forms and Bergman kernel of semi-positive and big line bundles. Commun. Anal. Geom. 22(1), 1–108 (2014)

    MathSciNet  MATH  Google Scholar 

  33. Hwang, A., Singer, M.: A momentum construction for circle-invariant Kähler metrics. Trans. Am. Math. Soc. 354(6), 2285–2325 (2002)

    MATH  Google Scholar 

  34. Loi, A.: Regular quantizations of Kähler manifolds and constant scalar curvature metrics. J. Geom. Phys. 53(3), 354–364 (2005)

    MathSciNet  MATH  Google Scholar 

  35. Loi, A.: Bergman and balanced metrics on complex manifolds. Int. J. Geom. Methods Mod. Phys. 2(4), 553–561 (2005)

    MathSciNet  MATH  Google Scholar 

  36. Loi, A., Mossa, R.: Berezin quantization of homogeneous bounded domains. Geom. Dedicata. 161(1), 119–128 (2012)

    MathSciNet  MATH  Google Scholar 

  37. Loi, A., Mossa, R., Zuddas, F.: Finite TYCZ expansions and cscK metrics. J. Math. Anal. Appl. 484(1), 123715 (2020)

    MathSciNet  MATH  Google Scholar 

  38. Loi, A., Zedda, M.: Balanced metrics on Hartogs domains. Abh. Math. Semin. Univ. Hambg. 81(1), 69–77 (2011)

    MathSciNet  MATH  Google Scholar 

  39. Loi, A., Zedda, M.: Balanced metrics on Cartan and Cartan–Hartogs domains. Math. Z. 270, 1077–1087 (2012)

    MathSciNet  MATH  Google Scholar 

  40. Loi, A., Zedda, M., Zuddas, F.: Some remarks on the Kähler geometry of the Taub-NUT metrics. Ann. Global Anal. Geom. 41(4), 515–533 (2012)

    MathSciNet  MATH  Google Scholar 

  41. Lu, Z.: On the lower order terms of the asymptotic expansion of Tian–Yau–Zelditch. Am. J. Math. 122(2), 235–273 (2000)

    MathSciNet  MATH  Google Scholar 

  42. Luić, S.: Balanced metrics and noncommutative Kähler geometry. Symmetry Integr. Geom.: Methods Appl. 6, 069 (2010)

    MATH  Google Scholar 

  43. Ma, X., Marinescu, G.: Holomorphic Morse inequalities and Bergman kernels. Progress in Mathematics, Vol. 254, Birkhǎuser Boston Inc., Boston, MA (2007)

  44. Ma, X., Marinescu, G.: Generalized Bergman kernels on symplectic manifolds. Adv. Math. 217(4), 1756–1815 (2008)

    MathSciNet  MATH  Google Scholar 

  45. Ma, X., Marinescu, G.: Berezin–Toeplitz quantization on Kähler manifolds. J. Reine Angew. Math. 662, 1–56 (2012)

    MathSciNet  MATH  Google Scholar 

  46. Rawnsley, J.: Coherent states and Kähler manifolds. Q. J. Math. Oxf. 28(2), 403–415 (1977)

    MATH  Google Scholar 

  47. Wang, A., Yin, W.P., Zhang, L.Y., Roos, G.: The Kähler–Einstein metric for some Hartogs domains over bounded symmetric domains. Sci. China Ser. A Math. 49(9), 1175–1210 (2006)

    MATH  Google Scholar 

  48. Tian, G.: On a set of polarized Kähler metrics on algebraic manifolds. J. Differ. Geom. 32, 99–130 (1990)

    MATH  Google Scholar 

  49. Xu, H.: A closed formula for the asymptotic expansion of the Bergman kernel. Commun. Math. Phys. 314, 555–585 (2012)

    MathSciNet  MATH  Google Scholar 

  50. Zedda, M.: Canonical metrics on Cartan–Hartogs domains. Int. J. Geom. Methods Mod. Phys. 9(1), 1250011 (2012)

    MathSciNet  MATH  Google Scholar 

  51. Zelditch, S.: Szegö kernels and a theorem of Tian. Int. Math. Res. Notices 6, 317–331 (1998)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee for many helpful suggestions.

Funding

Funding provided by the National Natural Science Foundation of China (No. 12071354).

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote the manuscript.

Corresponding author

Correspondence to Zhenhan Tu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Z., Tu, Z. The balanced metrics and cscK metrics on polyball bundles. Anal.Math.Phys. 13, 88 (2023). https://doi.org/10.1007/s13324-023-00851-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-023-00851-5

Keywords

Mathematics Subject Classification

Navigation