Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 18, 2023

Nambu Jona-Lasinio model of relativistic superconductivity

  • Stanley A. Bruce ORCID logo EMAIL logo

Abstract

We propose a Nambu Jona-Lasinio (NJL) effective model of relativistic superconductivity. In this framework, we discuss possible electromagnetic (EM) behaviors of (specifically) type-II superconductivity in line with the nonrelativistic Ginzburg–Landau (GL) theory. We comment on possible solitonic solutions of this model. Our investigation could be of relevance to describe type-II proton superconductivity in neutron-star crusts.


Corresponding author: Stanley A. Bruce, Complex Systems Group, Facultad de Ingenieria y Ciencias Aplicadas, Universidad de Los Andes, Santiago, Chile, E-mail: .

Funding source: Universidad de los Andes

Award Identifier / Grant number: FAI 12.20

  1. Research ethics: Not applicable.

  2. Author contributions: The author has accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The author states no conflict of interest.

  4. Research funding: This work was supported by Universidad de Los Andes, Santiago, Chile, through grant FAI 12.20.

  5. Data availability: Not applicable.

References

[1] D. Culcer, A. C. Keser, Y. Li, and G. Tkachov, “Transport in two-dimensional topological materials: recent developments in experiment and theory,” 2D Mater., vol. 7, p. 022007, 2020. https://doi.org/10.1088/2053-1583/ab6ff7.Search in Google Scholar

[2] A. Jellal, A. D. Alhaidari, and H. Bahlouli, “Confined Dirac fermions in a constant magnetic field,” Phys. Rev. A, vol. 80, p. 012109, 2009. https://doi.org/10.1103/physreva.80.012109.Search in Google Scholar

[3] B. Sacépé, M. Feigel’man, and T. M. Klapwijk, “Quantum breakdown of superconductivity in low-dimensional materials,” Nat. Phys., vol. 16, p. 734, 2020. https://doi.org/10.1038/s41567-020-0905-x.Search in Google Scholar

[4] Y. Ueno, A. Yamakage, Y. Tanaka, and M. Sato, “Symmetry-protected Majorana fermions in topological crystalline superconductors: theory and application to Sr2RuO4,” Phys. Rev. Lett., vol. 111, p. 087002, 2013. https://doi.org/10.1103/physrevlett.111.087002.Search in Google Scholar PubMed

[5] F. Loder, A. Kampf, and T. Kopp, “Route to topological superconductivity via magnetic field rotation,” Sci. Rep., vol. 5, p. 15302, 2015. https://doi.org/10.1038/srep15302.Search in Google Scholar PubMed PubMed Central

[6] Y. Ren, Z. Qiao, and Q. Niu, “Topological phases in two-dimensional materials: a review,” Rep. Prog. Phys., vol. 79, p. 066501, 2016. https://doi.org/10.1088/0034-4885/79/6/066501.Search in Google Scholar PubMed

[7] J. Avila, F. Pearanda, E. Prada, P. San-Jose, and R. Aguado, “Non-hermitian topology as a unifying framework for the Andreev versus Majorana states controversy,” Commun. Phys., vol. 2, p. 133, 2019. https://doi.org/10.1038/s42005-019-0231-8.Search in Google Scholar

[8] A. A. Zyuzin and A. A. Burkov, “Topological response in Weyl semimetals and the chiral anomaly,” Phys. Rev. B, vol. 86, p. 115133, 2012. https://doi.org/10.1103/physrevb.86.115133.Search in Google Scholar

[9] Y. Chen, S. Wu, and A. A. Burkov, “Axion response in Weyl semimetals,” Phys. Rev. B, vol. 88, p. 125105, 2013. https://doi.org/10.1103/physrevb.88.125105.Search in Google Scholar

[10] P. Goswami and S. Tewari, “Axionic field theory of (3+1)-dimensional Weyl semimetals,” Phys. Rev. B, vol. 88, p. 245107, 2013. https://doi.org/10.1103/physrevb.88.245107.Search in Google Scholar

[11] C. L. Kane and E. J. Mele, “Z2 topological order and the quantum spin Hall effect,” Phys. Rev. Lett., vol. 95, p. 146802, 2005. https://doi.org/10.1103/physrevlett.95.146802.Search in Google Scholar

[12] M. Frachet, I. Vinograd, R. Zhou, et al.., “Hidden magnetism at the pseudogap critical point of a cuprate superconductor,” Nat. Phys., vol. 16, p. 1064, 2020. https://doi.org/10.1038/s41567-020-0950-5.Search in Google Scholar

[13] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Microscopic theory of superconductivity,” Phys. Rev., vol. 106, p. 162, 1957, Phys. Rev., vol. 108, p. 1175, 1957. https://doi.org/10.1103/physrev.106.162.Search in Google Scholar

[14] L. N. Cooper, “Bound electron pairs in a degenerate fermi gas,” Phys. Rev., vol. 104, p. 1189, 1956. https://doi.org/10.1103/physrev.104.1189.Search in Google Scholar

[15] V. L. Ginzburg and L. D. Landau, “On the theory of superconductivity,” Sov. Phys. JETP, vol. 20, p. 1064, 1950.Search in Google Scholar

[16] A. A. Abrikosov, “On the properties of super conductors of the second group,” Sov. Phys. JETP, vol. 5, p. 1174, 1957.Search in Google Scholar

[17] D. Bailin and A. Love, “Superconductivity for relativistic electrons,” J. Phys. A: Math. Gen., vol. 15, p. 3001, 1982. https://doi.org/10.1088/0305-4470/15/9/046.Search in Google Scholar

[18] K. Capelle and E. K. U. Gross, “Relativistic theory of superconductivity,” Phys. Lett. A, vol. 198, p. 261, 1995. https://doi.org/10.1016/0375-9601(94)01010-r.Search in Google Scholar

[19] P. J. Wong and A. V. Balatsky, “Appearance of odd-frequency superconductivity in a relativistic scenario,” Phys. Rev. B, vol. 108, p. 014510, 2023. https://doi.org/10.1103/physrevb.108.014510.Search in Google Scholar

[20] J. Deng, J. Wang, and Q. Wang, “BCS-BEC crossover in a relativistic boson-fermion model beyond mean field approximation,” Phys. Rev. D, vol. 78, p. 034014, 2008. https://doi.org/10.1103/physrevd.78.034014.Search in Google Scholar

[21] A. J. Beekman and J. Zaanen, “Electrodynamics of Abrikosov vortices: the field theoretical formulation,” Front. Phys., vol. 6, p. 357, 2011. https://doi.org/10.1007/s11467-011-0205-0.Search in Google Scholar

[22] A. J. Beekman, D. Sadri, and J. Zaanen, “Condensing Nielsen–Olesen strings and the vortex–boson duality in 3+1 and higher dimensions,” New J. Phys., vol. 13, p. 033004, 2011. https://doi.org/10.1088/1367-2630/13/3/033004.Search in Google Scholar

[23] S. Mukherjee and A. Lahiri, “Emergent vortex–electron interaction from dualization,” Ann. Phys., vol. 418, p. 168167, 2020. https://doi.org/10.1016/j.aop.2020.168167.Search in Google Scholar

[24] S. A. Bruce, “Model of relativistic superconductivity,” Int. J. Mod. Phys. B, 2023, https://doi.org/10.1142/S0217979224502710.Search in Google Scholar

[25] M. Alford, J. Bowers, and K. Rajagopal, “Colour superconductivity in compact stars,” J. Phys. G: Nucl. Part. Phys., vol. 27, p. 541, 2001. https://doi.org/10.1088/0954-3899/27/3/335.Search in Google Scholar

[26] L. A. Kondratyuk, M. M. Giannini, and M. I. Krivoruchenko, “The SU(2) colour superconductivity,” Phys. Lett. B, vol. 269, p. 139, 1991, “Superconducting quark matter in SU(2) colour group,” Z. Phys. A, vol. 344, p. 99, 1992.10.1016/0370-2693(91)91465-8Search in Google Scholar

[27] M. Alford, K. Rajagopal, and F. Wilczek, “QCD at finite baryon density: nucleon droplets and color superconductivity,” Phys. Lett. B, vol. 422, p. 247, 1998. https://doi.org/10.1016/s0370-2693(98)00051-3.Search in Google Scholar

[28] M. Iwasaki and T. Iwado, “Superconductivity in quark matter,” Phys. Lett. B, vol. 350, p. 163, 1995. https://doi.org/10.1016/0370-2693(95)00322-c.Search in Google Scholar

[29] (a) T. Ohsaku, Phys. Rev. B, vol. 65, p. 024512, 2001. (b) T. Ohsaku, “BCS and generalized BCS superconductivity in relativistic quantum field theory: formulation,” Phys. Lett. B, vol. 634, p. 285, 2006.Search in Google Scholar

[30] R. Anglani, R. Casalbuoni, M. Ciminale, et al.., “Crystalline color superconductors,” Rev. Mod. Phys., vol. 86, p. 509, 2014. https://doi.org/10.1103/revmodphys.86.509.Search in Google Scholar

[31] D. D. Ivanenko, “Notes to the theory of interaction via particles,” Sov. Phys. JETP, vol. 13, p. 141, 1938.Search in Google Scholar

[32] M. Soler, “Classical, stable, nonlinear spinor field with positive rest energy,” Phys. Rev. D, vol. 1, p. 2766, 1970. https://doi.org/10.1103/physrevd.1.2766.Search in Google Scholar

[33] D. J. Gross and A. Neveu, “Dynamical symmetry breaking in asymptotically free field theories,” Phys. Rev. D, vol. 10, p. 3235, 1974. https://doi.org/10.1103/physrevd.10.3235.Search in Google Scholar

[34] R. Finkelstein, R. Lelevier, and M. Ruderman, “Nonlinear spinor fields,” Phys. Rev., vol. 83, p. 326, 1951. https://doi.org/10.1103/physrev.83.326.Search in Google Scholar

[35] W. Heisenberg, “Zur Quantentheorie nichtrenormierbarer Wellengleichungen,” Z. Naturforsch. A, vol. 9, p. 292, 1954. https://doi.org/10.1515/zna-1954-0406.Search in Google Scholar

[36] W. Thirring, “A soluble relativistic field theory,” Ann. Phys., vol. 3, p. 91, 1958. https://doi.org/10.1016/0003-4916(58)90015-0.Search in Google Scholar

[37] S. Weinberg, “Implications of dynamical symmetry breaking,” Phys. Rev. D, vol. 13, p. 974, 1976. https://doi.org/10.1103/physrevd.13.974.Search in Google Scholar

[38] K. Kondo, “Bosonization and duality of massive Thirring model,” Prog. Theor. Phys., vol. 94, p. 899, 1995.10.1143/PTP.94.899Search in Google Scholar

[39] V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge, Cambridge U. P., 1993.10.1017/CBO9780511628832Search in Google Scholar

[40] Y. Nogami and F. M. Toyama, “Transparent potential for the one-dimensional Dirac equation,” Phys. Rev. A, vol. 45, p. 5258, 1992. https://doi.org/10.1103/physreva.45.5258.Search in Google Scholar PubMed

[41] C. R. Hagen, “New solutions of the thirring model,” Il Nuovo Cimento B, vol. 51, p. 169, 1967. https://doi.org/10.1007/bf02712329.Search in Google Scholar

[42] J. I. Cirac, P. Maraner, and J. K. Pachos, “Cold atom simulation of interacting relativistic quantum field theories,” Phys. Rev. Lett., vol. 105, p. 190403, 2010. https://doi.org/10.1103/physrevlett.105.190403.Search in Google Scholar PubMed

[43] S. Coleman, “Quantum sine-Gordon equation as the massive Thirring model,” Phys. Rev. D, vol. 11, p. 2088, 1975. https://doi.org/10.1103/physrevd.11.2088.Search in Google Scholar

[44] S. A. Bruce, “Magnetically confined electrons and the Nambu–Jona-Lasinio model,” Eur. Phys. J. Plus, vol. 136, p. 498, 2021. https://doi.org/10.1140/epjp/s13360-021-01502-z.Search in Google Scholar

[45(a)] S. A. Bruce and J. F. Diaz-Valdes, “2D self-interacting magnetically confined electrons,” Phys. Scr., vol. 96, p. 075004, 2021. https://doi.org/10.1088/1402-4896/abde0b.Search in Google Scholar

(b) S. A. Bruce, “Remarks on the Dirac Kepler/Coulomb problem with a space-dependent mass term,” Phys. Scr., vol. 96, p. 125303, 2021.10.1088/1402-4896/ac1a4bSearch in Google Scholar

[46] S. A. Bruce and J. F. Diaz-Valdes, “Model of nonlinear axion-electrodynamics,” Int. J. Mod. Phys. D, vol. 30, p. 2150025, 2021. https://doi.org/10.1142/s0218271821500255.Search in Google Scholar

[47] S. P. Klevansky, “The Nambu—Jona-Lasinio model of quantum chromodynamics,” Rev. Mod. Phys., vol. 64, p. 649, 1992. https://doi.org/10.1103/revmodphys.64.649.Search in Google Scholar

[48] M. Alford, “Color-superconducting quark matter,” Annu. Rev. Nucl. Part. Sci., vol. 51, p. 131, 2001. https://doi.org/10.1146/annurev.nucl.51.101701.132449.Search in Google Scholar

[49] P. F. Bedaque and T. Schafer, “High-density quark matter under stress,” Nucl. Phys. A, vol. 697, p. 802, 2002. https://doi.org/10.1016/s0375-9474(01)01272-6.Search in Google Scholar

[50] Y. Nambu and G. Jona-Lasinio, “Dynamical model of elementary particles based on an analogy with superconductivity. I,” Phys. Rev., vol. 122, p. 345, 1961, Phys. Rev., vol. 124, p. 246, 1961. https://doi.org/10.1103/physrev.122.345.Search in Google Scholar

[51] N. N. Bogoliubov, “A new method in the theory of superconductivity. I,” Sov. Phys. JETP, vol. 7, p. 41, 1958.Search in Google Scholar

[52] V. Rubakov, Classical Theory of Gauge Fields, 1st ed. Princeton, NJ, Princeton U. P., 2002.Search in Google Scholar

[53] The Higgs mechanism was introduced simultaneously by a number of authors in the context of local-gauge invariant relativistic superconductivity models, P. W. Anderson (1963); G. S. Guralnik, C. R. Hagen and T. W. B. Kibble (1964); P. Higgs (1964); and in the context of mass of gauge vector mesons, by F. Englert and R. Brout (1964).Search in Google Scholar

[54] H. B. Nielsen and P. Olesen, “Vortex-line models for dual strings,” Nucl. Phys. B, vol. 61, p. 45, 1973. https://doi.org/10.1016/0550-3213(73)90350-7.Search in Google Scholar

[55] F. London, Superfluids, vol. I, New York, Wiley, 1950.Search in Google Scholar

[56] K. von Klitzing, G. Dorda, and M. Pepper, “New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance,” Phys. Rev. Lett., vol. 45, p. 494, 1980. https://doi.org/10.1103/physrevlett.45.494.Search in Google Scholar

[57] D. C. Tsui, H. L. Stormer, and A. C. Gossard, “Two-dimensional magnetotransport in the extreme quantum limit,” Phys. Rev. Lett., vol. 48, p. 1559, 1982. https://doi.org/10.1103/physrevlett.48.1559.Search in Google Scholar

[58] R. B. Laughlin, “Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations,” Phys. Rev. Lett., vol. 50, p. 1395, 1983. https://doi.org/10.1103/physrevlett.50.1395.Search in Google Scholar

[59] F. D. M. Haldane, “Geometrical description of the fractional quantum Hall effect,” Phys. Rev. Lett., vol. 107, p. 116801, 2011. https://doi.org/10.1103/physrevlett.107.116801.Search in Google Scholar

[60] B. Rosenstein and D. Li, Ginzburg-Landau Theory of Condensates: Thermodynamics, Dynamics and Formation of Topological Matter, Cambridge, Cambridge U. P., 2022.10.1017/9781108872737Search in Google Scholar

[61] M. Tinkham, Introduction to Superconductivity, 2nd ed. New York, McGraw-Hill, 1996.Search in Google Scholar

[62] M. Cyrot, “Ginzburg-Landau theory for superconductors,” Rep. Prog. Phys., vol. 36, p. 103, 1973. https://doi.org/10.1088/0034-4885/36/2/001.Search in Google Scholar

[63] P. Gor’kov and G. M. Eliashberg, “The behavior of a superconductor in a variable field,” Sov. Phys. JETP, vol. 28, p. 1291, 1969.Search in Google Scholar

[64] S. Weinberg, “Superconductivity for particular theorists,” Prog. Theor. Phys. Suppl., vol. 86, p. 43, 1986. https://doi.org/10.1143/ptps.86.43.Search in Google Scholar

[65] S. Weinberg, The Quantum Theory o f Fields, vol. II, Cambridge, Cambridge U. P., 1995.10.1017/CBO9781139644167Search in Google Scholar

[66] J. M. Lattimer and M. Prakash, “The physics of neutron stars,” Science, vol. 304, p. 536, 2004. https://doi.org/10.1126/science.1090720.Search in Google Scholar PubMed

[67] C. P. Lorenz, D. G. Ravenhall, and C. J. Pethick, “Neutron star crusts,” Phys. Rev. Lett., vol. 70, p. 379, 1993. https://doi.org/10.1103/physrevlett.70.379.Search in Google Scholar PubMed

[68] D. N. Kobyakov, “Application of superconducting-superfluid magnetohydrodynamics to nuclear “pasta” in neutron stars,” Phys. Rev. C, vol. 98, p. 045803, 2018. https://doi.org/10.1103/physrevc.98.045803.Search in Google Scholar

[69] Z.-W. Zhang and C. J. Pethick, “Proton superconductivity in pasta phases in neutron star crusts,” Phys. Rev. C, vol. 103, p. 055807, 2021. https://doi.org/10.1103/physrevc.103.055807.Search in Google Scholar

[70] K. Takanaka, “Magnetic properties of superconductors with uniaxial symmetry,” Phys. Status Solidi B, vol. 68, p. 623, 1975. https://doi.org/10.1002/pssb.2220680221.Search in Google Scholar

[71] K. Takanaka, “Upper critical field of anisotropic superconductors,” Solid State Commun., vol. 42, p. 123, 1982. https://doi.org/10.1016/0038-1098(82)90365-9.Search in Google Scholar

[72] D. Makarov, O. M. Volkov, A. Kákay, O. V. Pylypovskyi, B. Budinská and O. V. Dobrovolskiy, “New dimension in magnetism and superconductivity: 3D and curvilinear nanoarchitectures,” Adv. Mater., vol. 34, p. 2101758, 2022.10.1002/adma.202101758Search in Google Scholar PubMed

[73] O. V. Dobrovolskiy, “Abrikosov fluxonics in washboard nanolandscapes,” Physica C, vol. 533, p. 80, 2017. https://doi.org/10.1016/j.physc.2016.07.008.Search in Google Scholar

[74] E. H. Brandt, “Vortex-vortex interaction in thin superconducting films,” Phys. Rev. B, vol. 79, p. 134526, 2009. https://doi.org/10.1103/physrevb.79.134526.Search in Google Scholar

Received: 2023-05-18
Accepted: 2023-09-26
Published Online: 2023-10-18
Published in Print: 2023-12-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 4.5.2024 from https://www.degruyter.com/document/doi/10.1515/zna-2023-0120/html
Scroll to top button