Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 19, 2023

Narrow normal subgroups of Coxeter groups and of automorphism groups of Coxeter groups

  • Luis Paris and Olga Varghese EMAIL logo
From the journal Journal of Group Theory

Abstract

By definition, a group is called narrow if it does not contain a copy of a non-abelian free group. We describe the structure of finite and narrow normal subgroups in Coxeter groups and their automorphism groups.

Award Identifier / Grant number: ANR-19-CE40-0001-01

Award Identifier / Grant number: VA 1397/2-2

Funding statement: The first author is supported by the French project “AlMaRe” (ANR-19-CE40-0001-01) of the ANR. The second author is supported by DFG grant VA 1397/2-2.

Acknowledgements

We want to thank Philip Möller for useful comments on the previous version of this paper and the referee for many helpful remarks.

  1. Communicated by: Adrian Ioana

References

[1] G. Baumslag, Automorphism groups of residually finite groups, J. Lond. Math. Soc. 38 (1963), 117–118. 10.1112/jlms/s1-38.1.117Search in Google Scholar

[2] M. Bestvina, M. Feighn and M. Handel, The Tits alternative for Out(Fn). I. Dynamics of exponentially-growing automorphisms, Ann. of Math. (2) 151 (2000), no. 2, 517–623. 10.2307/121043Search in Google Scholar

[3] M. Bestvina, M. Feighn and M. Handel, The Tits alternative for Out(Fn). II. A Kolchin type theorem, Ann. of Math. (2) 161 (2005), no. 1, 1–59. 10.4007/annals.2005.161.1Search in Google Scholar

[4] N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Act. Sci. Indust. 1337, Hermann, Paris, 1968. Search in Google Scholar

[5] M. W. Davis, The Geometry and Topology of Coxeter Groups, London Math. Soc. Monogr. Ser. 32, Princeton University, Princeton, 2008. Search in Google Scholar

[6] R. M. Dudley, Continuity of homomorphisms, Duke Math. J. 28 (1961), 587–594. 10.1215/S0012-7094-61-02859-9Search in Google Scholar

[7] W. N. Franzsen and R. B. Howlett, Automorphisms of nearly finite Coxeter groups, Adv. Geom. 3 (2003), no. 3, 301–338. 10.1515/advg.2003.018Search in Google Scholar

[8] M. Gromov, Hyperbolic groups, Essays in Group Theory, Math. Sci. Res. Inst. Publ. 8, Springer, New York (1987), 75–263. 10.1007/978-1-4613-9586-7_3Search in Google Scholar

[9] J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Stud. Adv. Math. 29, Cambridge University, Cambridge, 1990. 10.1017/CBO9780511623646Search in Google Scholar

[10] N. V. Ivanov, Algebraic properties of the Teichmüller modular group, Dokl. Akad. Nauk SSSR 275 (1984), no. 4, 786–789. Search in Google Scholar

[11] D. Keppeler, P. Möller and O. Varghese, Automatic continuity for groups whose torsion subgroups are small, J. Group Theory 25 (2022), no. 6, 1017–1043. 10.1515/jgth-2021-0105Search in Google Scholar

[12] D. Krammer, The conjugacy problem for Coxeter groups, Groups Geom. Dyn. 3 (2009), no. 1, 71–171. 10.4171/ggd/52Search in Google Scholar

[13] A. Lubotzky, Normal automorphisms of free groups, J. Algebra 63 (1980), no. 2, 494–498. 10.1016/0021-8693(80)90086-1Search in Google Scholar

[14] G. Maxwell, The normal subgroups of finite and affine Coxeter groups, Proc. Lond. Math. Soc. (3) 76 (1998), no. 2, 359–382. 10.1112/S0024611598000112Search in Google Scholar

[15] J. McCarthy, A “Tits-alternative” for subgroups of surface mapping class groups, Trans. Amer. Math. Soc. 291 (1985), no. 2, 583–612. 10.1090/S0002-9947-1985-0800253-8Search in Google Scholar

[16] P. Möller and O. Varghese, Normal subgroups in automorphism groups, preprint (2022), https://arxiv.org/abs/2208.05677. Search in Google Scholar

[17] G. A. Noskov and E. B. Vinberg, Strong Tits alternative for subgroups of Coxeter groups, J. Lie Theory 12 (2002), no. 1, 259–264. Search in Google Scholar

[18] D. Osajda and P. Przytycki, Tits alternative for groups acting properly on 2-dimensional recurrent complexes, Adv. Math. 391 (2021), Paper No. 107976. 10.1016/j.aim.2021.107976Search in Google Scholar

[19] L. Paris, Irreducible Coxeter groups, Internat. J. Algebra Comput. 17 (2007), no. 3, 427–447. 10.1142/S0218196707003779Search in Google Scholar

[20] V. P. Platonov, A certain problem for finitely generated groups, Dokl. Akad. Nauk BSSR 12 (1968), 492–494. Search in Google Scholar

[21] D. Qi, A note on parabolic subgroups of a Coxeter group, Expo. Math. 25 (2007), no. 1, 77–81. 10.1016/j.exmath.2006.05.001Search in Google Scholar

[22] D. Qi, On irreducible, infinite, non-affine Coxeter groups, Ph.D. thesis, The Ohio State University, 2007. 10.4064/fm193-1-5Search in Google Scholar

[23] L. Ribes and P. Zalesskii, Profinite groups, 2nd ed., Ergeb. Math. Grenzgeb. (3) 40, Springer, Berlin, 2010. 10.1007/978-3-642-01642-4Search in Google Scholar

[24] D. J. S. Robinson, Finiteness Conditions and Generalized Soluble Groups. Part 1, Ergeb. Math. Grenzgeb. (3) 62, Springer, New York, 1972. 10.1007/978-3-662-07241-7_1Search in Google Scholar

[25] J. Tits, Free subgroups in linear groups, J. Algebra 20 (1972), 250–270. 10.1016/0021-8693(72)90058-0Search in Google Scholar

[26] J. Tits, Sur le groupe des automorphismes de certains groupes de Coxeter, J. Algebra 113 (1988), no. 2, 346–357. 10.1016/0021-8693(88)90164-0Search in Google Scholar

Received: 2022-12-01
Revised: 2023-08-10
Published Online: 2023-10-19
Published in Print: 2024-03-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 7.5.2024 from https://www.degruyter.com/document/doi/10.1515/jgth-2022-0202/html
Scroll to top button