Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Optimizing the Extraction of Polyphenols from the Bark of Terminalia arjuna and an In-silico Investigation on its Activity in Colorectal Cancer

Author(s): Tathagata Adhikary and Piyali Basak*

Volume 20, Issue 5, 2024

Published on: 17 October, 2023

Page: [653 - 665] Pages: 13

DOI: 10.2174/0115734099264119230925054833

Price: $65

Abstract

Background: The interconnection between different fields of research has gained interest due to its cutting-edge perspectives in solving scientific problems. Terminalia arjuna is indigenously used in India for curing several diseases, and its pharmacological activities are being revisited in recent drug-repurposing research.

Objectives: Efficient ultrasound-assisted extraction of phytochemicals from the bark of Terminalia arjuna is highlighted in this study. Following the optimization of the extraction process, the crude hydroethanolic extract is subjected to phytochemical profiling and an in-silico investigation of its anti-cancer properties.

Materials and Methods: A three-level four-factor Box-Behnken design is exploited to optimize four operational parameters, namely extraction time, ultrasonic power, ethanol concentration (as the extracting solvent) and solute (in g): solvent (in mL) ratio. At the optimum parametric condition, the crude extract is obtained, and its GC-MS analysis is carried out. An analysis of network pharmacology (by constructing and visualizing biological networks using Cytoscape) combined with molecular docking reveals the potential antineoplastic targets of the crude extract.

Results: The ANOVA table exhibits the significance, adequacy and reliability of the proposed second-order polynomial model with the R² value of 0.917 and adjusted R² of 0.865. Experimental results portray the significant antioxidant potential of the prepared extract in its crude form. The GC-MS analysis of the crude extract predicts the extracted phytochemicals, while the constructed biological networks highlight its multi-targeted activity in colorectal cancer.

Conclusion: The study identifies three phytochemicals viz. luteolin, β-sitosterol and arjunic acid as potent anti-cancer agents and can be extended with in-vitro and in-vivo experiments to validate the in-silico results, thus establishing lead phytochemicals in multi-targeted colorectal cancer therapies.

Keywords: Network pharmacology, polyphenol, Terminalia arjuna, box-behnken, optimization, antioxidant, colorectal, molecular docking.

Graphical Abstract
[1]
Petrovska, B. Historical review of medicinal plants′ usage. Pharmacogn. Rev., 2012, 6(11), 1-5.
[http://dx.doi.org/10.4103/0973-7847.95849] [PMID: 22654398]
[2]
WHO Global Report on Traditional and Complementary Medicine 2019. World Health Organization, 2019.
[3]
Stickel, F.; Schuppan, D. Herbal medicine in the treatment of liver diseases. Dig. Liver Dis., 2007, 39(4), 293-304.
[http://dx.doi.org/10.1016/j.dld.2006.11.004] [PMID: 17331820]
[4]
Amalraj, A.; Gopi, S. Medicinal properties of Terminalia arjuna (Roxb.) Wight & Arn.: A review. J. Tradit. Complement. Med., 2017, 7(1), 65-78.
[http://dx.doi.org/10.1016/j.jtcme.2016.02.003] [PMID: 28053890]
[5]
Dwivedi, S.; Chopra, D. Revisiting terminalia arjuna - An ancient cardiovascular drug. J. Tradit. Complement. Med., 2014, 4(4), 224-231.
[http://dx.doi.org/10.4103/2225-4110.139103] [PMID: 25379463]
[6]
Rao, B.C.S.; Singh, R.H.; Tripathi, K. Effect of Terminalia arjuna (W&A) on regression of LVH in hypertensives: A clinical study. J. Res. Ayurveda Siddha, 2001, 22(3–4), 216-227.
[7]
Bharani, A.; Ganguly, A.; Bhargava, K.D. Salutary effect of terminalia Arjuna in patients with severe refractory heart failure. Int. J. Cardiol., 1995, 49(3), 191-199.
[http://dx.doi.org/10.1016/0167-5273(95)02320-V] [PMID: 7649665]
[8]
Tchabo, W.; Ma, Y.; Kwaw, E.; Xiao, L.; Wu, M.; Apaliya, M.T. Impact of extraction parameters and their optimization on the nutraceuticals and antioxidant properties of aqueous extract mulberry leaf. Int. J. Food Prop., 2018, 21(1), 717-732.
[http://dx.doi.org/10.1080/10942912.2018.1446025]
[9]
Braimah, M. N.; Anozie, A. N.; Odejobi, O. J. Utilization of Response Surface Methodology (RSM) in the optimization of crude oil refinery process, new port-harcourt refinery, nigeria. JMEST, 2016, 3(3), 1-9.
[10]
Silva, V. Statistical Approaches With Emphasis on Design of Experiments Applied to Chemical Processes; InTech, 2018.
[http://dx.doi.org/10.5772/65616]
[11]
Myers, R.H.; Montgomery, D.C.; Vining, G.G.; Borror, C.M.; Kowalski, S.M. Response surface methodology: A retrospective and literature survey. J. Qual. Technol., 2004, 36(1), 53-77.
[http://dx.doi.org/10.1080/00224065.2004.11980252]
[12]
Espínola, F.; Moya, M.; Fernández, D.G.; Castro, E. Modelling of virgin olive oil extraction using response surface methodology. Int. J. Food Sci. Technol., 2011, 46(12), 2576-2583.
[http://dx.doi.org/10.1111/j.1365-2621.2011.02786.x]
[13]
Prakash Maran, J.; Manikandan, S.; Vigna Nivetha, C.; Dinesh, R. Ultrasound assisted extraction of bioactive compounds from Nephelium lappaceum L. fruit peel using central composite face centered response surface design. Arab. J. Chem., 2017, 10, S1145-S1157.
[http://dx.doi.org/10.1016/j.arabjc.2013.02.007]
[14]
Patist, A.; Bates, D. Ultrasonic innovations in the food industry: From the laboratory to commercial production. Innov. Food Sci. Emerg. Technol., 2008, 9(2), 147-154.
[http://dx.doi.org/10.1016/j.ifset.2007.07.004]
[15]
Zhang, Q. A network pharmacology approach to investigate the anticancer mechanism and potential active ingredients of Rheum Palmatum L. against lung cancer via induction of apoptosis. Front. Pharmacol., 2020, 11, 528308.
[http://dx.doi.org/10.3389/fphar.2020.528308]
[16]
Agbor, G.A.; Vinson, J.A.; Donnelly, P.E. Folin-ciocalteau reagent for polyphenolic assay. Int. J. Food Sci. Nutr. Diet., 2014, 3(8), 147-156.
[17]
Muflihah, Y.M.; Gollavelli, G.; Ling, Y.C. Correlation study of antioxidant activity with phenolic and flavonoid compounds in 12 indonesian indigenous herbs. Antioxidants, 2021, 10(10), 1530.
[http://dx.doi.org/10.3390/antiox10101530] [PMID: 34679665]
[18]
Sharma, O.P.; Bhat, T.K. DPPH antioxidant assay revisited. Food Chem., 2009, 113(4), 1202-1205.
[http://dx.doi.org/10.1016/j.foodchem.2008.08.008]
[19]
Berker, K.I.; Güçlü, K.; Tor, İ.; Apak, R. Comparative evaluation of Fe(III) reducing power-based antioxidant capacity assays in the presence of phenanthroline, batho-phenanthroline, tripyridyltriazine (FRAP), and ferricyanide reagents. Talanta, 2007, 72(3), 1157-1165.
[http://dx.doi.org/10.1016/j.talanta.2007.01.019] [PMID: 19071739]
[20]
Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem., 1999, 269(2), 337-341.
[http://dx.doi.org/10.1006/abio.1999.4019] [PMID: 10222007]
[21]
Dasgupta, N.; De, B. Antioxidant activity of some leafy vegetables of India: A comparative study. Food Chem., 2007, 101(2), 471-474.
[http://dx.doi.org/10.1016/j.foodchem.2006.02.003]
[22]
Coudert, E.; Gehant, S.; de Castro, E.; Pozzato, M.; Baratin, D.; Neto, T.; Sigrist, C.J.A.; Redaschi, N.; Bridge, A.; Bridge, A.J.; Aimo, L.; Argoud-Puy, G.; Auchincloss, A.H.; Axelsen, K.B.; Bansal, P.; Baratin, D.; Neto, T.M.B.; Blatter, M-C.; Bolleman, J.T.; Boutet, E.; Breuza, L.; Gil, B.C.; Casals-Casas, C.; Echioukh, K.C.; Coudert, E.; Cuche, B.; de Castro, E.; Estreicher, A.; Famiglietti, M.L.; Feuermann, M.; Gasteiger, E.; Gaudet, P.; Gehant, S.; Gerritsen, V.; Gos, A.; Gruaz, N.; Hulo, C.; Hyka-Nouspikel, N.; Jungo, F.; Kerhornou, A.; Le Mercier, P.; Lieberherr, D.; Masson, P.; Morgat, A.; Muthukrishnan, V.; Paesano, S.; Pedruzzi, I.; Pilbout, S.; Pourcel, L.; Poux, S.; Pozzato, M.; Pruess, M.; Redaschi, N.; Rivoire, C.; Sigrist, C.J.A.; Sonesson, K.; Sundaram, S.; Bateman, A.; Martin, M-J.; Orchard, S.; Magrane, M.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E.H.; Britto, R.; A-Jee, H.B.; Cukura, A.; Denny, P.; Dogan, T.; Ebenezer, T.G.; Fan, J.; Garmiri, P.; da Costa Gonzales, L.J.; Hatton-Ellis, E.; Hussein, A.; Ignatchenko, A.; Insana, G.; Ishtiaq, R.; Joshi, V.; Jyothi, D.; Kandasaamy, S.; Lock, A.; Luciani, A.; Lugaric, M.; Luo, J.; Lussi, Y.; MacDougall, A.; Madeira, F.; Mahmoudy, M.; Mishra, A.; Moulang, K.; Nightingale, A.; Pundir, S.; Qi, G.; Raj, S.; Raposo, P.; Rice, D.L.; Saidi, R.; Santos, R.; Speretta, E.; Stephenson, J.; Totoo, P.; Turner, E.; Tyagi, N.; Vasudev, P.; Warner, K.; Watkins, X.; Zaru, R.; Zellner, H.; Wu, C.H.; Arighi, C.N.; Arminski, L.; Chen, C.; Chen, Y.; Huang, H.; Laiho, K.; McGarvey, P.; Natale, D.A.; Ross, K.; Vinayaka, C.R.; Wang, Q.; Wang, Y. Annotation of biologically relevant ligands in UniProtKB using ChEBI. Bioinformatics, 2023, 39(1), btac793.
[http://dx.doi.org/10.1093/bioinformatics/btac793] [PMID: 36484697]
[23]
Gilson, M.K.; Liu, T.; Baitaluk, M.; Nicola, G.; Hwang, L.; Chong, J. BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res., 2016, 44(D1), D1045-D1053.
[http://dx.doi.org/10.1093/nar/gkv1072] [PMID: 26481362]
[24]
Piñero, J.; Ramírez-Anguita, J.M.; Saüch-Pitarch, J.; Ronzano, F.; Centeno, E.; Sanz, F.; Furlong, L.I. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res., 2019, 48(D1), gkz1021.
[http://dx.doi.org/10.1093/nar/gkz1021] [PMID: 31680165]
[25]
García-Aranda, M.; Redondo, M. Targeting receptor kinases in colorectal cancer. Cancers, 2019, 11(4), 433.
[http://dx.doi.org/10.3390/cancers11040433] [PMID: 30934752]
[26]
Biovia, D.S. Discovery studio modeling environment; Release, 2017.
[27]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera?A visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[28]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[29]
Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. In: Methods Mol. Biol; , 2015; 1263, pp. 243-250.
[http://dx.doi.org/10.1007/978-1-4939-2269-7_19]
[30]
Cournia, Z.; Allen, B.; Sherman, W. Relative binding free energy calculations in drug discovery: Recent advances and practical considerations. J. Chem. Inf. Model., 2017, 57(12), 2911-2937.
[http://dx.doi.org/10.1021/acs.jcim.7b00564] [PMID: 29243483]
[31]
Elksibi, I.; Haddar, W.; Ben Ticha, M.; gharbi, R.; Mhenni, M.F. Development and optimisation of a non conventional extraction process of natural dye from olive solid waste using response surface methodology (RSM). Food Chem., 2014, 161, 345-352.
[http://dx.doi.org/10.1016/j.foodchem.2014.03.108] [PMID: 24837961]
[32]
Al-Farsi, M.A.; Lee, C.Y. Optimization of phenolics and dietary fibre extraction from date seeds. Food Chem., 2008, 108(3), 977-985.
[http://dx.doi.org/10.1016/j.foodchem.2007.12.009] [PMID: 26065761]
[33]
Naczk, M.; Shahidi, F. Extraction and analysis of phenolics in food. J. Chromatogr. A, 2004, 1054(1-2), 95-111.
[http://dx.doi.org/10.1016/S0021-9673(04)01409-8] [PMID: 15553136]
[34]
Kuljarachanan, T.; Devahastin, S.; Chiewchan, N. Evolution of antioxidant compounds in lime residues during drying. Food Chem., 2009, 113(4), 944-949.
[http://dx.doi.org/10.1016/j.foodchem.2008.08.026]
[35]
Tomšik, A.; Pavlić, B.; Vladić, J.; Ramić, M.; Brindza, J.; Vidović, S. Optimization of ultrasound-assisted extraction of bioactive compounds from wild garlic (Allium ursinum L.). Ultrason. Sonochem., 2016, 29, 502-511.
[http://dx.doi.org/10.1016/j.ultsonch.2015.11.005] [PMID: 26563916]
[36]
Yang, B.; Zhang, M.; Weng, H.; Xu, Y.; Zeng, L. Optimization of ultrasound assisted extraction (UAE) of kinsenoside compound from Anoectochilus roxburghii (Wall.) Lindl by response surface methodology (RSM). Molecules, 2020, 25(1), 193.
[http://dx.doi.org/10.3390/molecules25010193] [PMID: 31906599]
[37]
Mohammadpour, H.; Sadrameli, S.M.; Eslami, F.; Asoodeh, A. Optimization of ultrasound-assisted extraction of moringa peregrina oil with response surface methodology and comparison with soxhlet method. Ind. Crops Prod., 2019, 131, 106-116.
[http://dx.doi.org/10.1016/j.indcrop.2019.01.030]
[38]
Zhu, Y.; Yu, J.; Jiao, C.; Tong, J.; Zhang, L.; Chang, Y.; Sun, W.; Jin, Q.; Cai, Y. Optimization of quercetin extraction method in Dendrobium officinale by response surface methodology. Heliyon, 2019, 5(9), e02374.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02374] [PMID: 31517114]
[39]
Oomens, J.; Steill, J.D. Free carboxylate stretching modes. J. Phys. Chem. A, 2008, 112(15), 3281-3283.
[http://dx.doi.org/10.1021/jp801806e] [PMID: 18363393]
[40]
Chaudhary, S.P.; Mishra, A.; Singh, A.K.; Dwivedi, K.N.; Ram, B. A FT-IR spectroscopic study of phytoconstituents of prepared formulation of arjuna (terminalia arjuna lin.) and shilajatu. Int. J. Sci. Res., 2015, 5, 12.
[41]
Ramesh, P.; Palaniappan, A. Terminalia arjuna, a cardioprotective herbal medicine–relevancy in the modern era of pharmaceuticals and green nanomedicine-A review. Pharmaceuticals, 2023, 16(1), 126.
[http://dx.doi.org/10.3390/ph16010126] [PMID: 36678623]
[42]
Uthirapathy, S.; Ahamad, J. Phytochemical analysis of different fractions of terminalia arjuna bark by GC-MS. Int. Res. J. Pharma., 2019, 10(1), 10.
[http://dx.doi.org/10.7897/2230-8407.10018]
[43]
Gupta, D.; Kumar, M. Evaluation of in vitro antimicrobial potential and GC–MS analysis of camellia sinensis and terminalia arjuna. Biotechnol. Rep., 2017, 13, 19-25.
[http://dx.doi.org/10.1016/j.btre.2016.11.002] [PMID: 28352558]
[44]
Sadhanandham, S. GC-MS analysis and antioxidant studies of an ayurvedic drug, partharishtam. Int. J. Pharm. Sci. Rev. Res., 2015, 34(2), 273-281.
[45]
Epa, U.S. User’s guide for TEST (version 5.1)(toxicity estimation software tool): A program to estimate toxicity from molecular structure. 2020. Available from: https://www.epa.gov/sites/default/files/2016-05/documents/600r16058.pdf
[46]
Schyman, P.; Liu, R.; Desai, V.; Wallqvist, A. vNN web server for ADMET predictions. Front. Pharmacol., 2017, 8, 889.
[http://dx.doi.org/10.3389/fphar.2017.00889]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy