Skip to main content
Log in

Can Pheromones Contribute to Phylogenetic Hypotheses? A Case Study of Chrysomelidae

  • Research
  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Pheromones mediate species-level communication in the search for mates, nesting, and feeding sites. Although the role of pheromones has long been discussed by various authors, their existence was not proven until the mid-twentieth century when the first sex pheromone was identified. From this finding, much has been speculated about whether this communication mechanism has acted as a regulatory agent in the process of speciation, competition, and sexual selection since it acts as an intraspecific barrier. Chrysomelidae is one of the major Phytophaga lineages, with approximately 40,000 species. Due to this immense diversity the internal relationships remain unstable when analyzed only with morphological data, consequently recent efforts have been directed to molecular analyses to establish clarity for the relationships and found their respective monophyly. Therefore, our goals are twofold 1) to synthesize the current literature on Chrysomelidae sex pheromones and 2) to test whether Chrysomelidae sex pheromones and their chemical structures could be used in phylogenetic analysis for the group. The results show that, although this is the first analysis in Chrysomelidae to use pheromones as a phylogenetic character, much can be observed in agreement with previous analyses, thus confirming that pheromones, when known in their entirety within lineages, can be used as characters in phylogenetic analyses, bringing elucidation to the relationships and evolution of organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ando T, Inomata S-i, Yamamoto M (2004) Lepidopteran sex pheromones. In: Schulz S (ed) The chemistry of pheromones and other semiochemicals I. Topics in current chemistry. Springer, Berlin, Heidelberg, pp 51–96. https://doi.org/10.1007/b95449

    Chapter  Google Scholar 

  • Andrade SMM, Szczerbowski D, Vidal DM, Allison JD, Zarbin PHG (2019) Mate recognition by the green mate borer, Hedypathes betulinus (Coleoptera: Cerambycidae): the role of cuticular compounds. J Insect Behav 32:120–133. https://doi.org/10.1007/s10905-019-09719-8

    Article  Google Scholar 

  • Andrews ES, Theis N, Adler LS (2007) Pollinator and herbivore attraction to Cucurbita floral volatiles. J Chem Ecol 33:1682–1691. https://doi.org/10.1007/s10886-007-9337-7

    Article  CAS  PubMed  Google Scholar 

  • Ball HJ, Chaudhury MFB (1973) A sex attractant of the western corn rootworm. J Econ Entomol 66:1051–1053

    Article  CAS  Google Scholar 

  • Bartelt RJ, Cossé AA, Zilkowski BW, Weisleder D, Momany FA (2001) Male-specific sesquiterpenes from Phyllotreta and Aphthona flea beetles. J Chem Ecol 27(12):2397–2423. https://doi.org/10.1023/a:1013667229345

    Article  CAS  PubMed  Google Scholar 

  • Bartelt RJ, Cossé AA, Zilkowski BW, Weisleder D, Grode SH, Wiedenmann RN, Post SL (2006) Dimethylfuran-lactone pheromone from males of Galerucella calmariensis and Galerucella pusilla. J Chem Ecol 32:693–712. https://doi.org/10.1007/s10886-005-9026-3

    Article  CAS  PubMed  Google Scholar 

  • Bartelt RJ, Cossé AA, Zilkowski BW, Wiedenmann RN, Raghu S (2008) Early-summer pheromone biology of Galerucella calmariensis and relationship to dispersal and colonization. Biol Control 46(3):409–416. https://doi.org/10.1016/j.biocontrol.2008.05.010

    Article  Google Scholar 

  • Beran F, Mewis I, Srinivasan R, Svoboda J, Vial C, Mosimann H, Boland W, Buttner C, Ulrichs C, Hansson BS, Reinecke A (2011) Male Phyllotreta striolata (F.) produce an aggregation pheromone: identification of male-specific compounds and interaction with host plant volatiles. J Chem Ecol 37:85–97. https://doi.org/10.1007/s10886-010-9899-7

    Article  CAS  PubMed  Google Scholar 

  • Beran F, Jiménez-Alemán GH, Lin M-Y, Hsu Y-C, Mewis I, Srinivasan R, Ulrichs C, Boland W, Hansson BS, Reinecke A (2016) The aggregation pheromone of Phyllotreta striolata (Coleoptera: Chrysomelidae) revisited. J Chem Ecol 42:748–755. https://doi.org/10.1007/s10886-016-0743-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biemont JC, Chaibou M, Pouzat J (1992) Localization and fine structure of the female sex pheromone-producing glands in Bruchidius atrolineatus (Pic) (Coleoptera: Bruchidae). Int J Insect Morphol Embryol 21(3):251–262

    Article  Google Scholar 

  • Blossey B (1995) Coexistence of two leaf-beetles in the same fundamental niche. Distribution, adult phenology and oviposition. Oikos 74:225–234. https://doi.org/10.2307/3545652

    Article  Google Scholar 

  • Blum MS, Brand JM, Wallace JB, Fales HM (1972) Chemical characterization of the defensive secretion of a chrysomelid larva. Life Sci 11(II):525–551

    Article  CAS  Google Scholar 

  • Bocak L, Barton C, Crampton-Platt A, Chesters D, Ahrens D, Vogler AP (2014) Building the Coleoptera tree-of-life for >8000 species: composition of public DNA data and fit with Linnaean classification. Syst Entomol 39(1):97–110. https://doi.org/10.1111/syen.12037

    Article  Google Scholar 

  • Bolter CJ, Dicke M, Van Loon JJA, Visser JH, Posthumus MA (1997) Attraction of Colorado potato beetle to herbivore-damaged plants during herbivory and after its termination. J Chem Ecol 23(4):1003–1023. https://doi.org/10.1023/B:JOEC.0000006385.70652.5e

    Article  CAS  Google Scholar 

  • Borghuis A, Van Groenendael J, Madsen O, Ouborg J (2009) Phylogenetic analyses of the leaf beetle genus Galerucella: Evidence for host switching at speciation? Mol Phylogenet Evol 53(2):361–367. https://doi.org/10.1016/j.ympev.2009.07.005

    Article  CAS  PubMed  Google Scholar 

  • Bouchard P, Bousquet Y, Davies AE, Alonso-Zarazaga MA, Lawrence JF, Lyal CHC, Newton AF, Reid CAM, Schmitt M, Ślipiński SA (2011) Family-group names in Coleoptera (Insecta). ZooKeys 88:1–972. https://doi.org/10.3897/zookeys.88.807

    Article  Google Scholar 

  • Brezolin AN, Martinazzo J, Muenchen DK, Cezaro AM, Rigo AA, Steffens C, Steffens J, Blassioli-Moraes MC, Borges M (2018) Tools for detecting insect semiochemicals: a review. Anal Bioanal Chem 410:4091–4108. https://doi.org/10.1007/s00216-018-1118-3

    Article  CAS  PubMed  Google Scholar 

  • Bruce TJ, Martin JL, Smart LE, Pickett JA (2011) Development of semiochemical attractants for monitoring bean seed beetle, Bruchus rufimanus. Pest Manag Sci 67:1303–1308. https://doi.org/10.1002/ps.2186

    Article  CAS  PubMed  Google Scholar 

  • Bukejs A, Schmitt M (2016) Lilioceris groehni sp. n.: the first authentic species of Criocerinae (Coleoptera, Chrysomelidae) from Baltic amber. Zookeys 618:67–77. https://doi.org/10.3897/zookeys.618.10085

    Article  Google Scholar 

  • Bush RM (2001) Predicting adaptive evolution. Nat Rev Genet 2:387–392. https://doi.org/10.1038/35072023

    Article  CAS  PubMed  Google Scholar 

  • Butler C (1609) The Feminine Monarchie: or the Historie of Bees. Oxford

  • Cai C, Tihelka E, Giacomelli M, Lawrence JF, Ślipiński A, Kundrata R, Yamamoto S, Thayer MK, Newton AF, Leschen RAB, Gimmel ML, Lü L, Engel MS, Bouchard P, Huang D, Pisani D, Donoghue PCJ (2022) Integrated phylogenomics and fossil data illuminate the evolution of beetles. R Soc Open Sci 9:211771. https://doi.org/10.1098/rsos.211771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carruthers RI, Franc MK, Gee WS, Cosse AA, Grewell BJ, Beck JJ (2011) Volatile emissions from the flea beetle Altica litigata (Coleoptera: Chrysomelidae) associated with invasive Ludwigia hexapetala. Chemoecology 21:253–259. https://doi.org/10.1007/s00049-011-0090-6

    Article  CAS  Google Scholar 

  • Casari AS, Ide S (2012) Coleoptera Linnaeus, 1758. In: Rafael JA, Melo GAR, Carvalho CJB, Casari AS, Constantino R (eds) Insetos do Brasil, Diversidade e Taxonomia. Ribeirão Preto, Holos, pp 453–521

    Google Scholar 

  • Caxambú MG, Almeida LM (1999) Descrição dos estágios imaturos e redescrição de Lamprosoma azureum Germar (Chrysomelidae, Lamprosomatinae). Revista Brasileira de Zoologia 16(1):243–256. https://doi.org/10.1590/S0101-81751999000500017

    Article  Google Scholar 

  • Chaboo CS (2007) Biology and phylogeny of the Cassidinae Gyllenhal sensu lato (tortoise and leaf-mining beetles) (Coleoptera: Chrysomelidae). Bull Am Mus Nat Hist 305:1–250. https://doi.org/10.1206/00030090(2007)305[1:BAPOTC]2.0.CO;2

    Article  Google Scholar 

  • Chaibou M, Pierre D, Biemont JC, Pouzat ET (1993) Existence d’une phéromone sexuelle chez Caryedon serratus: attractivé des femelles et réactivité des mâles. Entomol Exp Appl 67:253–262. https://doi.org/10.1111/j.1570-7458.1993.tb01676.x

    Article  Google Scholar 

  • Chamorro ML (2014) Lamprosomatinae Lacordaire, 1848. In: Leschen RAB, Beutel RG (eds) Handbook of Zoology. Coleoptera, Beetles. Morphology and Systematics, vol 3. De Gruyter, Berlim, Boston, pp 81–87

    Google Scholar 

  • Chiluwal K, Kim J, Bae SD, Maharjan R, Park CG (2017) Attractiveness of male azuki bean beetle to the synthetic blends of 2E- and 2Z-homofarnesals. J Asia Pac Entomol 20(4):1183–1189. https://doi.org/10.1016/j.aspen.2017.09.003

    Article  Google Scholar 

  • Chuman T, Cuss PL, Doolittle RE, McLaughlin JR, Krysan JL, Schalk JM, Tumlinson JH (1987) Identification of female-produced sex pheromone from banded cucumber beetle, Diabrotica balteata LeConte (Coleoptera: Chrysomelidae). J Chem Ecol 13(7):1601–1615

    Article  CAS  PubMed  Google Scholar 

  • Cork A, Hall DR, Blaney WM, Simmonds MSJ (1991) Identification of a component of the female sex pheromone of Callosobruchus analis (Coleoptera: Bruchidae). Tetrahedron Lett 32:129–132. https://doi.org/10.1016/S0040-4039(00)71236-6

    Article  CAS  Google Scholar 

  • Cossé AA, Bartelt RJ, Zilkowski BW (2002) Identification and electrophysiological activity of a novel hydroxy ketone emitted by male cereal leaf beetles. J Nat Prod 65:1156–1160. https://doi.org/10.1021/np020063q

    Article  CAS  PubMed  Google Scholar 

  • Cossé AA, Bartelt RJ, Zilkowski BW, Bean DW, Petroski RJ (2005) The aggregation pheromone of Diorhabda elongata, a biological control agent of saltcedar (Tamarix spp.): identification of two behaviorally active components. J Chem Ecol 31(3):657–70. https://doi.org/10.1007/s10886-005-2053-2

    Article  CAS  PubMed  Google Scholar 

  • Daloze D, Braekman JC, Pasteels JM (1986) A toxic dipeptide from the defense glands of the Colorado beetle. Science 233(4760):221–223. https://doi.org/10.1126/science.233.4760.221

    Article  CAS  PubMed  Google Scholar 

  • Darwin CR (1871) The descent of man and selection in relation to sex, vol 2, 1st edn. John Murray, London

    Book  Google Scholar 

  • Derunkov A, Konstantinov A (2013) Taxonomic changes in the genus Diabrotica Chevrolat (Coleoptera: Chrysomelidae: Galerucinae): results of a synopsis of North and Central America Diabrotica species. Zootaxa 3686(3):301–325. https://doi.org/10.11646/zootaxa.3686.3.1

    Article  CAS  PubMed  Google Scholar 

  • Derunkov A, Prado LR, Tishechkin AK, Konstantinov AS (2015) New species of Diabrotica Chevrolat (Coleoptera: Chrysomelidae: Galerucinae) and a key to Diabrotica and related genera: results of a synopsis of North and Central American Diabrotica species. J Insect Biodiversity 3(2):1–55

    Article  Google Scholar 

  • Dettner K, Schwinger G (1987) Chemical defence in the larvae of the leaf beetle Gonioctena viminalis L. (Coleoptera: Chrysomelidae). Experientia 43. Birkhäuser Verlag. CH-4010. Basel/Switzerland

  • DeWilde J, Lambers-Suverkropp KHR, Van Tol A (1969) Responses to airflow and airborne plant odour in the Colorado beetle. Neth J Plant Pathol 75:53–57. https://doi.org/10.1007/BF02137193

    Article  Google Scholar 

  • Dickens JC (1999) Predator-prey interactions olfactory adaptations of generalist and specialist predators. Agric For Entomol 1:47–54. https://doi.org/10.1046/j.1461-9563.1999.00007

    Article  Google Scholar 

  • Dickens JC (2000) Orientation of Colorado potato beetle to natural and synthetic blends of volatiles emitted by potato plants. Agric For Entomol 2:167–172. https://doi.org/10.1046/j.1461-9563.2000.00065.x

    Article  Google Scholar 

  • Dickens JC, Oliver JE, Hollister B, Davis JC, Klun JA (2002) Breaking a paradigm: male-produced aggregation pheromone for the Colorado potato beetle. J Exp Biol 205(13):1925–1933. https://doi.org/10.1242/jeb.205.13.1925

    Article  PubMed  Google Scholar 

  • Dickinson JL (1995) Trade-offs between postcopulatory riding and mate location in the blue milkweed beetle. Behav Ecol 6(3):280–286. https://doi.org/10.1093/beheco/6.3.280

    Article  Google Scholar 

  • Dobler S, Farrell BD (1999) Host use evolution in Chrysochus milkweed beetles: evidence from behaviour, population genetics and phylogeny. Mol Ecol 8(8):1297–1307. https://doi.org/10.1046/j.1365-294x.1999.00693.x

    Article  CAS  PubMed  Google Scholar 

  • Dobler S, Haberer W, Witte L, Hartmann T (2000) Selective sequestration of pyrrolizidine alkaloids from diverse host plants by Longitarsus flea beetle. J Chem Ecol 26(5):1281–1298

    Article  CAS  Google Scholar 

  • Dobzhansky T (1940) Speciation as a stage in evolutionary divergence. Am Nat 74(753):312–321. https://doi.org/10.1086/280899

    Article  Google Scholar 

  • Douglas HB, Konstantinov AS, Brunke AJ, Moseyko AG, Chapados JT, Eyres J, Richter R, Savard K, Sears E, Prathapan KD, Ruan Y, Dettman JR (2023) Phylogeny of the flea beetles (Galerucinae: Alticini) and the position of Aulacothorax elucidated through anchored phylogenomics (Coleoptera: Chrysomelidae: Alticini). Syst Entomol: 1–26. https://doi.org/10.1111/syen.12582

  • Dubis E, Malíski E, Dubis A, Szafranrk J, Nawrot J, Poplawski J, Wróbel JT (1987) Sex dependent composition of cuticular hydrocarbons of the Colorado beetle Leptinotarsa decemlineata Say. Comp Biochem Physiol 87A(4):839–843

    Article  CAS  Google Scholar 

  • Duckett CN, Gillespie JJ, Kjer KM (2004) Relationships among the subfamilies of Chrysomelidae inferred from small subunit ribosomal DNA and morphology, with special emphasis on the relationship among the flea beetles and the Galerucinae. In: Jolivet P, Santiago-Blay JA, Schmitt M (eds) New developments in the biology of Chrysomelidae. SPB Academic Publishing, The Hague, pp 3–18

    Chapter  Google Scholar 

  • Dussourd DE, Eisner T (1987) Vein-cutting behavior: insect counterploy to the latex defense of plants. Science 237(4817):898–901. https://doi.org/10.1126/science.3616620

    Article  CAS  PubMed  Google Scholar 

  • Eben A (2022) Ecology and evolutionary history of Diabrotica beetles - overview and update. Insects 13(156):1–11. https://doi.org/10.3390/insects13020156

    Article  Google Scholar 

  • Eben A, Espinosa de Los Monteros A (2013) Tempo and mode of evolutionary radiation in Diabroticina beetles (genera Acalymma, Cerotoma, and Diabrotica). Zookeys 19(332):207–321. https://doi.org/10.3897/zookeys.332.5220

    Article  Google Scholar 

  • Ehmke A, Rahier M, Pasteels JM, Theuring C, Hartmann T (1999) Sequestration, maintenance, and tissue distribution of pyrrolizidine alkaloid N-oxides in larvae of two Oreina species. J Chem Ecol 25(10):2385–2395

    Article  CAS  Google Scholar 

  • Endler JA (1993) Some general comments on the evolution and design of animal communication systems. Phil Trans R Soc B: Biol Sci 340:215–225. https://doi.org/10.1098/rstb.1993.0060

    Article  CAS  Google Scholar 

  • Evans PH, Becerra JX, Venable DL, Bowers W (2000) Chemical analysis of squirt-gun defense in Bursera and counter defense by Chrysomelid beetles. J Chem Ecol 26(3):745–754. https://doi.org/10.1023/A:1005436523770

    Article  CAS  Google Scholar 

  • Fabre J-H (1879–1907) Souvenirs Entomologiques: Études sur l'instinct et les murs des insectes. Septième Série. Delagrave, Paris, pp 363–374

  • Farrell BD (1998) ‘“Inordinate fondness”’ explained: Why are there so many beetles? Science 281(5376):555–559. https://doi.org/10.1126/science.281.5376.555

    Article  CAS  PubMed  Google Scholar 

  • Farrell BD, Sequeira AS (2004) Evolutionary rates in the adaptive radiation of beetles on plants. Evolution 58(9):1984–2001

    PubMed  Google Scholar 

  • Fonseca MG, Zarbin PHG (2009) Mating behaviour and evidence for sex-specific pheromones in Hedypathes betulinus (Coleoptera: Cerambycidae: Lamiinae). J Appl Entomol 133(9–10):695–701. https://doi.org/10.1111/j.1439-0418.2009.01424.x

    Article  CAS  Google Scholar 

  • Fonseca MG, Vidal DM, Zarbin PH (2010) Male produced sex-pheromone of the Cerambycidae beetle Hedypathes betulinus: chemical identification and biological activity. J Chem Ecol 36(11):36–1139. https://doi.org/10.1007/s10886-010-9850-y

    Article  CAS  Google Scholar 

  • Fors L, Liblikas I, Andersson P, Borg-Karlson A-K, Cabezas N, Mozuraitis R, Hambäck PA (2015) Chemical communication and host search in Galerucella leaf beetles. Chemoecology 25:33–45. https://doi.org/10.1007/s00049-014-0174-1

    Article  CAS  PubMed  Google Scholar 

  • Frérot B, Leppik E (2016) Composition attractive pour la bruche de la féverole. FR3035775A1

  • Frérot B, Taupin P, Lefranc M (2015) Bruche de la fève sur féverole: des messages chimiques décryptés. Perspect Agric: 60–63

  • Fukumori K, Oguchi K, Ikeda H, Shinohara T, Tanahashi M, Moriyama M, Koga R, Fukatsu T (2022) Evolutionary dynamics of host organs for microbial symbiosis in tortoise leaf beetles (Coleoptera: Chrysomelidae: Cassidinae). Am Soc Microbiol 13(1):1–17. https://doi.org/10.1128/mbio.03691-21. (e03691-21)

    Article  Google Scholar 

  • Gassmann A, Schroeder D, Maw E, Sommer G (1996) Biology, ecology, and host specificity of European Aphthona spp. (Coleoptera, Chrysomelidae) used as biocontrol agents for leafy spurge, Euphorbia esula (Euphorbiaceae), in North America. Biol Control 6(1):105–113

    Article  Google Scholar 

  • Geiselhardt S, Otte T, Hilker M (2009) The role of cuticular hydrocarbons in male mating behavior of the mustard leaf beetle, Phaedon cochleariae (F.). J Chem Ecol 35:1162–1171. https://doi.org/10.1007/s10886-009-9704-7

    Article  CAS  PubMed  Google Scholar 

  • Geiselhardt SF, Geiselhardt S, Peschke K (2011) Congruence of epicuticular hydrocarbons and tarsal secretions as a principle in beetles. Chemoecology 21:181–186. https://doi.org/10.1007/s00049-011-0077-3

    Article  CAS  Google Scholar 

  • Goloboff PA (2008) Calculating SPR distances between trees. Cladistics 24(4):591–597. https://doi.org/10.1111/j.1096-0031.2007.00189.x

    Article  PubMed  Google Scholar 

  • Gómez SR, Gil-Tapetado D, García-Gila J, Blasco-Aróstegui J, Polidori C (2021) The leaf beetle Labidostomis lusitanica (Coleoptera: Chrysomelidae) as an Iberian pistachio pest: projecting risky areas. Pest Manag Sci 78(1):217–229. https://doi.org/10.1002/ps.6624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goméz-Rodríguez C, Crampton-Platt A, Timmermans MJTN, Baselga A, Vogler AP (2015) Validating the power of mitochondrial metagenomics for community ecology and phylogenetics of complex assemblages. Methods Ecol Evol 6(8):883–894. https://doi.org/10.1111/2041-210X.12376

    Article  Google Scholar 

  • Gómez-Zurita J, Hunt T, Vogler AP (2008) Multilocus ribosomal RNA phylogeny of the leaf beetles (Chrysomelidae). Cladistics 24:34–50. https://doi.org/10.1111/j.1096-003

    Article  Google Scholar 

  • Gonçalves RB, Meira OM, Rosa BB (2022) Total-evidence dating and morphological partitioning: a novel approach to understand the phylogeny and biogeography of augochlorine bees (Hymenoptera: Apoidea). Zool J Linn Soc 195(4):1390–1406. https://doi.org/10.1093/zoolinnean/zlab098

    Article  Google Scholar 

  • Greenfield MD (2002) Signalers and receivers: mechanisms and evolution of arthropod communication. Oxford University Press, p 432

    Book  Google Scholar 

  • Grimaldi D, Engel MS (2005) Evolution of the Insects, 1st edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Guss PL (1976) The sex pheromone of the western corn rootworm (Diabrotica virgifera). Environ Entomol 5(2):219–223

    Article  Google Scholar 

  • Guss PL, Tumlinson JH, Sonnet PE, Proveaux AT (1982) Identification of a female-produced sex pheromone of the western corn rootworm. J Chem Ecol 8(2):545–556

    Article  CAS  PubMed  Google Scholar 

  • Guss PL, Carney RL, Sonnet PE, Tumlinson H (1983a) Stereospecific sex attractant for Diabrotica cristata (Harris) (Coleoptera: Chrysomelidae). Environ Entomol 12:1296–1297

    Article  Google Scholar 

  • Guss PL, Tumlinson JH, Sonnet PE, McLaughlin JR (1983b) Identification of a female-produced sex. J Chem Ecol 9(9):1363–1375

    Article  CAS  PubMed  Google Scholar 

  • Guss PL, Sonnet PE, Carney RL, Branson TF, Tumlinson JH (1984) Response of Diabrotica virgifera virgifera, D. v. zeae, and D. porracea to stereoisomers of 8-methyl-2-decyl propanoate. J Chem Ecol 10(7):1123–1131

    Article  CAS  PubMed  Google Scholar 

  • Haddad S, McKenna DD (2016) Phylogeny and evolution of the superfamily Chrysomeloidea (Coleoptera: Cucujiformia). Syst Entomol 41(4):697–716. https://doi.org/10.1111/syen.12179

    Article  Google Scholar 

  • Hambäck PA, Weingartner E, Ericson L, Fors L, Cassel-Lundhagen A, Stenberg JA, Bergsten J (2013) Bayesian species delimitation reveals generalist and specialist parasitic wasps on Galerucella beetles (Chrysomelidae): sorting by herbivore or plant host. BMC Evol Biol 13:1–14. https://doi.org/10.1186/1471-2148-13-92

    Article  Google Scholar 

  • Hight SD, Blossey B, Laing J, Declerck-Floate R (1995) Establishment of insect biological control agents from Europe against Lythrum salicaria in North America. Environ Entomol 24(4):967–977. https://doi.org/10.1093/ee/24.4.967

    Article  Google Scholar 

  • Hilker M, Schulz S (1991) Anthraquinones in different developmental stages of Galeruca tanaceti (Coleoptera, Chrysomelidae). J Chem Ecol 17:2323–2332. https://doi.org/10.1007/BF00988011

    Article  CAS  PubMed  Google Scholar 

  • Hilker M, Eschbach U, Dettneret K (1992) Occurrence of anthraquinones in eggs and larvae of several Galerucinae. Sci Nat 79(6):271–274. https://doi.org/10.1007/BF01175394

    Article  CAS  Google Scholar 

  • Hinchliff CE, Smith SA, Allman JF, Burleigh JG, Chaudhary R, Coghill LM, Crandall KA, Dengc J, Drew BT, Gazis R, Gude K, Hibbett DS, Katzi LA, Dail Laughinghouse H IV, McTavish EJ, Midford PE, Owen CL, Ree RH, Rees JA, Soltis DE, Williamsm T, Cranstonk KA (2015) Synthesis of phylogeny and taxonomy into a comprehensive tree of life. Evolution 11(41):12764–12769. https://doi.org/10.1073/pnas.1423041112

    Article  CAS  Google Scholar 

  • Hollande MA-C (1909) Sur la fonction d’excretionchez les insectes salicicoles et en particulier sur l’existence des derives salicyles. Annales de l’Université de Grenoble 21:459–517

    Google Scholar 

  • Honda H, Yamamoto I (1976) Evidence for and chemical nature of a sex pheromone present in azuki bean weevil, Callosobruchus chinensis L. Proceedings Symposium on Insect Pheromones and their Applications (Nagaoka and Tokyo), 164

  • Hope JA, Horler DF, Rowlands DG (1967) A possible pheromone of the bruchid Acanthoscelides obtectus (Say). J Stored Prod Res 3:387–388

    Article  Google Scholar 

  • Horler DF (1970) (–) Methyl n-tetradeca-trans-2,4,5-trienoate, an allenic ester produced by the male Dried Bean beetle, Acanthoscelides obtectus (Say. J Chem Soc C: Organic 6:859–862. https://doi.org/10.1039/J39700000859

    Article  CAS  Google Scholar 

  • Howard RW, Jackson LL, Banse H, Blows MW (2003) Cuticular hydrocarbons of Drosophila birchii and D. serrata: identification and role in mate choice in D. serrata. J Chem Ecol 29(4):961–976. https://doi.org/10.1023/a:1022992002239

    Article  CAS  PubMed  Google Scholar 

  • Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23(2):254–267. https://doi.org/10.1093/molbev/msj030

    Article  CAS  PubMed  Google Scholar 

  • Islami I, Nikbakhtzadeh MR (2009) New records of canthariphily among beetles (Coleoptera) from Iran. Turk J Entomol 33(4):243–251

    Google Scholar 

  • Johnson CD (1981) Interactions between bruchid (Coleoptera) feeding guilds and behavioral patterns of pods of the Leguminosae. Environ Entomol 10:249–253

    Article  Google Scholar 

  • Johnson CD (1990) Systematics of the seed beetle genus Acanthoscelides (Bruchidae) of northern South America. Trans Am Entomol Soc 116:297–618

    Google Scholar 

  • Johnson CD, Romero-Nápoles JJ (2004) A review of evolution of ovoposition guilds in the Bruchidae (Coleoptera). Rev Bras Entomol 48(3):401–408. https://doi.org/10.1590/S0085-56262004000300017

    Article  Google Scholar 

  • Johnson CD, Romero JJ, Raimúndez-Urrutia E (2001) Ecology of Amblycerus crassipunctatus Ribeiro-Costa (Coleoptera: Bruchidae) in seeds of Humiriaceae, a new host family for Bruchids, with an ecological comparision to other species of Amblycerus. Coleopt Bull 55(1):37–48

    Article  Google Scholar 

  • Johnson CD (1989) Adaptive radiation of Acanthoscelides in seeds: examples of Legume-Bruchid Interactions. In: Shirton CH, Zarucchi JL (eds) Advances in Legume Biology. Monographs in Systematic Botany from the Missouri Botanical Garden, pp 747–779

  • Jolivet P, Lawrence JF, Verma KK, Ślipiński A (2014) Eumolpinae C. G. Thomson, 1859. In: Leschen RAB, Beutel RG (eds) Handbook of Zoology. Coleoptera, Beetles. Morphology and systematics, vol 3. Walter de Gruyter, Berlin, pp 217–225

    Google Scholar 

  • Jurenka R (2004) Insect pheromone biosynthesis. In: Schulz S (ed) The Chemistry of Pheromones and Other Semiochemicals I. Topics in Current Chemistry 239. Springer, Berlin Heidelberg. https://doi.org/10.1007/b95450

    Chapter  Google Scholar 

  • Jyothi KN, Prasuna AL, Prasad AR, Tewari H (2014) Electrophysiological and behavioural responses of groundnut seed beetle Caryedon serratus (Olivier) (Coleoptera: Chrysomelidae) to conspecific and groundnut seed chemical cues. Afr Entomol 22(3):505–511. https://doi.org/10.4001/003.022.0309

    Article  Google Scholar 

  • Kawazu K, Ichiki RT, Dang DT, Nakamura S (2011) Mating sequence and evidence for the existence of a female contact sex pheromone in Brontispa longissima (Coleoptera: Chrysomelidae). Jpn Agric Res Q 45(1):99–106. https://doi.org/10.6090/jarq.45.99

    Article  Google Scholar 

  • Kergoat GJ, Le Ru BP, Sadeghi SE, Tuda M, Reid CA, György Z, Genson G, Ribeiro-Costa CS, Delobel A (2015) Evolution of Spermophagus seed beetles (Coleoptera, Bruchinae, Amblycerini) indicates both synchronous and delayed colonizations of host plants. Mol Phylogenet Evol 89:91–103. https://doi.org/10.1016/j.ympev.2015.04.014

    Article  PubMed  Google Scholar 

  • Kingsolver JM (2002) Bruchidae Latreille 1802. In: Arnett RH, Thomas MC, Skelley PE, Frank JH (eds) Amarican Beetles. Polyphaga: Scarabaeoidea though Curculionoidea. CRC, Boca Raton, pp 602–608

    Google Scholar 

  • Kocienski PJ, Cernigliaro G, Feldstein G (1977) A Synthesis of (±)-Methyl n-Tetradeca-trans-2,4,5-trienoate, an Allenic Ester Produced by the Male Dried Bean Beetle Acanthoscelides obtectus (Say). J Org Chem 42(2):353–355

    Article  CAS  Google Scholar 

  • Konstantinov AS (1998) Revision of the Paleartic species of Aphthona Chevrolat and cladistic classification of the Aphthonini (Coleoptera, Chrysomelidae, Alticinae). Memoirs on Entomology, International. Am Entomol Inst 11:429

    Google Scholar 

  • Kuhar TP, Mori K, Dickens JC (2006) Potential of a synthetic aggregation pheromone for integrated pest management of Colorado potato beetle. Agric For Entomol 8:77–81. https://doi.org/10.1111/j.1461-9555.2006.00286.x

    Article  Google Scholar 

  • Kumano-Nomura Y, Yamaoka R (2009) Beetle visitations, and associations with quantitative variation of attractants in floral odors of Homalomena propinqua (Araceae). J Plant Res 122:183–192. https://doi.org/10.1007/s10265-008-0204-6

    Article  PubMed  Google Scholar 

  • Landor PD, Landor SR, Mukasa S (1971) Synthesis of (±)-methyl tetradeca-trans-2,4,5-trienoate, the allenic sex pheromone produced by the male dried bean beetle. J Chem Soc D 0(24):1638–1639. https://doi.org/10.1039/c29710001638

    Article  CAS  Google Scholar 

  • Laurent P, Braekman J-C, Daloze D, Pasteels JM (2003) An ecdysteroid (22-acetyl-20-hydroxyecdysone) from the defense gland secretion of an insect: Chrysolina carnifex (Coleoptera: Chrysomelidae). Chemoecology 13:109–111. https://doi.org/10.1007/s00049-003-0235-3

    Article  CAS  Google Scholar 

  • Lawrence JF, Lawrence CAM (2014) Sagrinae Leach, 1815. In: Leschen RAB, Beutel RG (eds) Handbook of Zoology. Coleoptera, Beetles. Morphology and systematics, vol 3. Walter de Gruyter, Berlin, pp 264–270

    Google Scholar 

  • Leal WS, Bento JMS, Vilela EF, Della Lucia TMC (1994) Female sex pheromone of the longhorn beetle Migdolus fryanus Westwood: N-(2’S)-methylbutanoyl 2-methylbutylamine. Experientia 50(9):853–856. https://doi.org/10.1007/BF01956471

    Article  CAS  Google Scholar 

  • Leschen RAB, Beutel RG (2014) Handbook of Zoology: Arthropoda: Insecta: Coleoptera: Volume 3: Morphology and Systematics (Phytophaga). De Gruyter, Berlin, München, Boston. https://doi.org/10.1515/9783110274462

    Book  Google Scholar 

  • Liebregts W, Chapman K (2004) Impact and control of the coconut hispine beetle, Brontispa longissima Gestro (Coleoptera: Chrysomelidae), pp 19–34. In Report of the Expert Consultation on Coconut Beetle Outbreak in APPPC Member Countries. FAO Regional Office for Asia and the Pacific

  • López S, Rodrigo-Gómez S, Fernández-Carrillo E, Corbella-Martorell C, Quero C (2022) 2-Isobutyl-3-methoxypyrazine as a Putative Male-Specific Aggregation Pheromone in Labidostomis lusitanica (Germar) (Coleoptera: Chrysomelidae). Preprints 2022120343. https://doi.org/10.20944/preprints202212.0343.v1

  • Manguin S, White R, Blossey B, Hight SD (1993) Genetics, taxonomy, and ecology of certain species of Galerucella (Coleoptera: Chrysomelidae). Ann Entomol Soc Am 86(4):397–410. https://doi.org/10.1093/aesa/86.4.397

    Article  Google Scholar 

  • Marques FDA, Wendler EP, Macedo A, Wosch CL, Maia BHS, Mikami AY, Arruda-Gatti IC, Pissinati A, Mingotte FLC, Alves A, Ventura MU (2009) Response of Diabrotica speciosa (Coleoptera: Chrysomelidae) to 1,4-dimethoxybenzene and analogs in common bean crop. Braz Arch Biol Technol 52(6):1333–1340

    Article  CAS  Google Scholar 

  • Martin S, Drijfhout F (2009) A review of ant cuticular hydrocarbons. J Chem Ecol 35:1151–1161. https://doi.org/10.1007/s10886-009-9695-4

    Article  CAS  PubMed  Google Scholar 

  • Marvaldi AE, Duckett CN, Kjer KM, Gillespie JJ (2009) Structural alignment of 18S and 28S rDNA sequences provides insights into the phylogeny of Phytophaga and related beetles (Coleoptera: Cucujiformia). Zool Scr 38:63–7710

    Article  Google Scholar 

  • Matsuda K (1976) Flavonoids as feeding stimulants of the beetles attacking the polygonaceous plants. Tohoku J Agric Res 27(3–4):115–121

    CAS  Google Scholar 

  • Matsuda K (1978) Feeding stimulation of flavonoids for various leaf beetles (Coleoptera, Chrysomelidae). Appl Entomol Zool 13(3):228–230

    Article  CAS  Google Scholar 

  • Matsuda K, Matsumoto Y (1975) Feeding stimulation of the organic acids characteristic to the polygonaceous plants in four species of Chrysomelidae. Jpn J Appl Entomol Zool 19:281–284

    Article  CAS  Google Scholar 

  • Matsuda K, Sugawara F (1980) Defensive secretion of chrysomelid larvae Chrysomela vigintipunctata costella (Marseul), C. populi L. and Gastrolina depressa Baly (Coleoptera: Chrysomelidae). Appl Entomol Zool 15(3):316–320

    Article  CAS  Google Scholar 

  • McIndoo NE (1926) An insect olfactometer. J Econ Entomol 19(3):545–571. https://doi.org/10.1093/jee/19.3.545

    Article  CAS  Google Scholar 

  • McKenna DD, Sequeira AS, Marvaldi AE, Farrell BD (2009) Temporal lags and overlap in the diversification of weevils and flowering plants. Proc Natl Acad Sci USA 106:7083–7088. https://doi.org/10.1073/pnas.0810618106

    Article  PubMed  PubMed Central  Google Scholar 

  • McKenna DD, Shin S, Ahrens D, Balke M, Beza-Beza C, Clarke DJ, Donath A, Escalona HE, Friedrich F, Letsch H, Liuj S, Maddisonk D, Mayere C, Misofe B, Murina PJ, Niehuisg O, Petersc RS, Podsiadlowskie L, Pohll H, Scullym ED, Yanl EV, Zhouo X, Ślipiński A, Beutel RG (2019) The evolution and genomic basis of beetle diversity. Proceedings of the National Academy of Sciences of the United States of America 116(49):24729–24737. https://doi.org/10.1073/pnas.1909655116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKenna DD, Wild AL, Kanda K, Bellamy CL, Beutel RG, Caterino MS, Farnum CW, Hawks DC, Ivie MA, Jameson ML, Leschen RAB, Marvaldi AE, Mchugh JV, Newton AF, Robertson JA, Thayer MK, Whiting MF, Lawrence JF, Ślipiński A, Maddison DR, Farrell BD (2015) The beetle tree of life reveals Coleoptera survived end Permian mass extinction to diversify during the Cretaceous terrestrial revolution. Syst Entomol 40:835–880. https://doi.org/10.1111/syen.12132

    Article  Google Scholar 

  • Mclaughlin JR, Tumlinson JH, Mori K (1991) Responses of Male Diabrotica balteata to Stereoisomers of the Sex Pheromone 6,12-dimethylpentadecan-2-one. J Econ Entomol 84(1):99–102

    Article  CAS  Google Scholar 

  • Meinwald J, Jones TH, Eisner T, Hicks K (1977) New methylcyclopentanoid terpenes from the larval defensive secretion of a chrysomelid beetle (Plagiodera versicolora). Proc Natl Acad Sci USA 74(6):2189–2193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metcalf RL, Metcalf RA, Rhodes AM (1980) Cucurbitacins as kairomones for diabroticite beetles. Proc Natl Acad Sci USA 77(7):3769–3772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metcalf RL (1994) Chemical ecology of diabroticites. In: Jolivet PH, Cox ML, Petitpierre E (eds) Novel aspects of the biology of Chrysomelidae. Series Entomologica 50, pp 153–166

  • Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010, New Orleans, LA

  • Moore BP (1967) Hydrogen cyanide in the defensive secretions of larval Paropsini (Coleoptera, Chrysomelidae). J Aust Entomol Soc 6:36–38

    Article  Google Scholar 

  • Mori K (2005) Synthesis of (R)-ar-turmerone and its conversion to (R)-ar-himachalene, a pheromone component of the flea beetle: (R)-ar-himachalene is dextrorotatory in hexane, while levorotatory in chloroform. Tetrahedron: Asymmetry 16(3):685–692. https://doi.org/10.1016/j.tetasy.2004.11.077

    Article  CAS  Google Scholar 

  • Mori K, Nukada T, Ebata T (1981) Synthesis methyl of optically active forms of (E)-2,4,5-tetradecatrienoate, the pheromone of the male dried bean beetle. Tetrahedron 37(7):1343–1347. https://doi.org/10.1016/S0040-4020(01)92450-0

    Article  CAS  Google Scholar 

  • Morris BD, Smyth RR, Foster SP, Hoffmann MP, Roelofs WL, Franke S, Francke W (2005) Vittatalactone, a ꞵ-Lactone from the Striped Cucumber Beetle, Acalymma vittatum. J Nat Prod 68(1):26–30. https://doi.org/10.1021/np049751v

    Article  CAS  PubMed  Google Scholar 

  • Morse GE (2014) Bruchinae Latreille, 1802. In: Leschen RAB, Beutel RG (eds) Handbook of Zoology. Coleoptera, Beetles. Morphology and systematics, vol 3. De Gruyter, Berlim, Boston, pp 189–197

    Google Scholar 

  • Muto S, Bando M, Mori K (2004) Synthesis and stereochemistry of the four himachalene-type sesquiterpenes isolated from the flea beetle (Aphthona flava) as pheromone candidates. Eur J Org Chem 9:1946–1952. https://doi.org/10.1002/ejoc.200300812

    Article  CAS  Google Scholar 

  • Nadein K, Bezděk J (2014) Galerucinae Latreille, 1802. In: Leschen RAB, Beutel RG (eds) Handbook of Zoology. Coleoptera, Beetles. Morphology and systematics, vol 3. Walter de Gruyter, Berlin/Boston, pp 251–259

    Google Scholar 

  • Nakamura S, Konishi K, Takasu K (2006) Invasion of the Coconut Hispine Beetle, Brontispa longissima: Current Situation and Control Measures in Southeast Asia. Proceedings of International Workshop on Development of Database (APASD) for Biological Invasion 3:1–9

  • Nammour D, Huignard J, Pouzat J (1988) A female sex pheromone in Bruchidius atrolineatus (Pic) (Coleoptera, Bruchidae): analysis of the factors affecting production or emission of this pheromone. Physiol Entomol 13:185–192

    Article  Google Scholar 

  • Nápoles JR (2016) Systematics of the seed beetle genus Decellebruchus Borowiec, 1987 (Coleoptera, Bruchidae). Zookeys. 579:59–81. https://doi.org/10.3897/zookeys.579.7716

    Article  Google Scholar 

  • Nie RE, Xue HJ, Hua Y, Yang XK, Vogler AP (2012) Distinct species or colour polymorphism? Life history, morphology and sequence data separate two Pyrrhalta elm beetles (Coleoptera: Chrysomelidae). Syst Biodivers 10(2):133–146. https://doi.org/10.1080/14772000.2012.687783

    Article  Google Scholar 

  • Nie RE, Breeschoten T, Timmermans MJTN, Nadein K, Xue H-J, Bai M, Huang Y, Yang X-K, Vogler AP (2018) The phylogeny of Galerucinae (Coleoptera: Chrysomelidae) and the performance of mitochondrial genomes in phylogenetic inference compared to nuclear rRNA genes. Cladistics 34(2):113–130. https://doi.org/10.1111/cla.12196

    Article  PubMed  Google Scholar 

  • Nie RE, Andujar C, Gómez-Rodriguez C, Bai M, Xue HJ, Tang M, Yang CT, Tang P, Yang XK, Vogler AP (2020a) The phylogeny of leaf beetles (Chrysomelidae) inferred from mitochondrial genomes. Syst Entomol 45(1):188–204. https://doi.org/10.1111/syen.12387

    Article  Google Scholar 

  • Nie RE, Vogler AP, Yang XK, Lin M (2020b) Higher-level phylogeny of longhorn beetles (Coleoptera: Chrysomeloidea) inferred from mitochondrial genomes. Syst Entomol 46(1):56–70. https://doi.org/10.1111/syen.12447

    Article  Google Scholar 

  • Nielsen JK (1978) Host plant discrimination within Cruciferae, feeding responses of four leaf beetles (Coleoptera: Chrysomelidae) to glucosinolates, cucurbitacins and cardenolides. Entomol Exp Appl 24:41–54

    Article  CAS  Google Scholar 

  • Nixon KC (1999–2004) Winclada ver. ASADO 1.61. TNT-MRBAYES SLAVER. Published by the author, Ithaca, New York. Avaible at: http://www.cladistics.com/. Acessed Nov 2022

  • Nojima S, Shimomura K, Honda H, Yamamoto I, Ohsawa K (2007) Contact sex pheromone components of the Cowpea Weevil, Callosobruchus maculatus. J Chem Ecol 33:923–933. https://doi.org/10.1007/s10886-007-9266-5

    Article  CAS  PubMed  Google Scholar 

  • Nylander JAA, Wilgenbusch JC, Warren DL, Swofford DL (2008) AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 24:581–583

    Article  CAS  PubMed  Google Scholar 

  • Oliver JE, Dickens JC, Glass TE (2002) (S)-3,7-Dimethyl-2-oxo-6-octene-1,3-diol: an aggregation pheromone of the Colorado potato beetle, Leptinotarsa decemlineata (Say). Tetrahedron Lett 43:2641–2643. https://doi.org/10.1242/jeb.205.13.1925

    Article  CAS  Google Scholar 

  • Page RDM (2001) Nexus data editor 0.5.0. Program distributed by the author, Institute of Biomedical and Life Sciences. University of Glasgow, Glasgow. Available at rod/NDE/nde.html

  • Panday G, Bhatt PA, Kanaujia S, Kanaujia K, Jyothi KN, Prasuna AL (2011) Studies on electrophysiology, olfactometric response and chemical analysis of groundnut extracts against groundnut bruchid (Caryedon serratus). Int J Agric Technol 7(5):1265–1273

    Google Scholar 

  • Pasteels JM, Daloze D, van Dorsser W, Roba J (1979) Cardiac glycosides in the defensive secretion of Chrysolina herbacea (Coleoptera, Chrysomelidae). Identification, biological role and pharmacological activity. Comp Biochem Physiol 63C:117–121

    CAS  Google Scholar 

  • Pasteels JM, Rowell-Rahier M, Braekman JC, Dupont A (1983) Salicin from host plant as precursor of salicylaldehyde in defensive secretion of secretion of Chrysomeline larvae. Physiol Entomol 8:307–314

    Article  CAS  Google Scholar 

  • Pasteels JM, Rowell-Rahier M, Randoux T, Braekman JC, Daloze D (1988) Pyrrolizidine alkaloids of probable host-plant origin in the pronotal and elytral secretion of the leaf beetle Oreina cacaliae. Entomol Exp Appl 49:55–58. https://doi.org/10.1007/BF00188238

    Article  CAS  Google Scholar 

  • Pasteels JM, Termonia A, Windsor DM, Witte L, Theuring C, Hartmann T (2001) Pyrrolizidine alkaloids and pentacyclic triterpene saponins in the defensive secretions of Platyphora leaf beetles. Chemoecology 11:113–120. https://doi.org/10.1007/pl00001840

    Article  CAS  Google Scholar 

  • Pauls P, Becker T, Rahfeld P, Gretscher RR, Paetz C, Pasteels J, von Reuss SH, Burse A, Boland W (2016) Two defensive lines in juvenile leaf beetles; Esters of 3-nitropropionic acid in the hemolymph and aposematic warning. J Chem Ecol 42:240–248. https://doi.org/10.1007/s10886-016-0684-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peacock L, Lewis M, Powers S (2001) Volatile compounds from Salix spp. varieties differing in susceptibility to three willow beetle species. J Chem Ecol 27(10):1943–1951. https://doi.org/10.1023/a:1012278417424

    Article  CAS  PubMed  Google Scholar 

  • Pedersen HÆ, Watthana S, Kocyan A, Srimuang K-O (2013) Pollination biology of Luisia curtisii (Orchidaceae): indications of a deceptive system operated by beetles. Plant Syst Evol 299:177–185. https://doi.org/10.1007/s00606-012-0713-6

    Article  Google Scholar 

  • Peng C, Weiss MJ (1992) Evidence of an aggregation pheromone in the flea beetle, Phyllotreta cruciferae (Goeze) (Coleoptera: Chrysomelidae). J Chem Ecol 18(6):875–884. https://doi.org/10.1007/BF00988328

    Article  CAS  PubMed  Google Scholar 

  • Peng C, Bartelt RJ, Weiss MJ (1999) Male crucifer flea beetles produce an aggregation pheromone. Physiol Entomol 24:98–99

    Article  Google Scholar 

  • Peterson MA, Honchak BM, Locke SE, Beeman TE, Mendoza J, Green J, Buckingham KJ, White MA, Monsen KJ (2005) Relative abundance and the species-specific reinforcement of male mating preference in the Chrysochus (Coleoptera: Chrysomelidae) hybrid zone. Evolution 59(12):2639–2655. https://doi.org/10.1111/j.0014-3820.2005.tb00976.x

    Article  PubMed  Google Scholar 

  • Peterson MA, Dobler S, Larson EL, Juárez D, Schlarbaum T, Monsen KJ, Francke W (2007) Profiles of cuticular hydrocarbons mediate male mate choice and sexual isolation between hybridising Chrysochus (Coleoptera: Chrysomelidae). Chemoecology 17:87–96. https://doi.org/10.1007/s00049-007-0366-z

    Article  CAS  Google Scholar 

  • Phillips JK, Walgenbach CA, Klein JA, Burkholder WE, Schmuff NR, Fales HM (1985) (R*, S*)-5-hydroxy-4-methyl-3-heptanone: male-produced aggregation pheromone of Sitophilus oryzae (L.) and S. zeamais Motsch. J Chem Ecol 11:1263–1274. https://doi.org/10.1007/BF01024114

    Article  CAS  PubMed  Google Scholar 

  • Phillips TW, Phillips JK, Webster FX, Tang R, Burkholder WE (1996) Identification of sex pheromones from cowpea weevil, Callosobruchus maculatus, and related studies with C. analis (Coleoptera: Bruchidae). J Chem Ecol 22(12):2233–2249. https://doi.org/10.1007/BF02029543

    Article  CAS  PubMed  Google Scholar 

  • Pierce AM, Pierce HD Jr, Oehlschlager AC, Borden JH (1985) Macrolide aggregation pheromones in Oryzaephilus surinamensis and Oryzaephilus mercator (Coleoptera: Cucujidae). J Agric Food Chem 33(5):848–852

    Article  CAS  Google Scholar 

  • Pimbert M, Pouzat J (1988) Electroantennogram responses of Zabrotes subfasciatus to odours of the sexual partner. Entomol Exp Appl 47(1):49–53. https://doi.org/10.1111/j.1570-7458.1988.tb02281.x

    Article  Google Scholar 

  • Pirkle WH, Boeder CW (1978) Synthesis and Absolute Configuration of (–)-Methyl (E)-2,4,5- tetradecatrienoate, the Sex Attractant of the Male Dried Bean Weevil. J Org Chem 43(11):2091–2093

    Article  CAS  Google Scholar 

  • Pouzat J, Nammour D (1989) Electrophysiological investigations of sex pheromone reception and release in Bruchidius atrolineatus. Physiol Entomol 14:319–324

    Article  Google Scholar 

  • Qadir I, Qamar A, Paul B, Mir AH (2021) Cuticular hydrocarbons C14–C36 are potential contact pheromonal elements modulating some behaviors in Zygogramma bicolorata (Coleoptera: Chrysomelidae). Biologia 76:123–132. https://doi.org/10.2478/s11756-020-00515-w

    Article  CAS  Google Scholar 

  • Rambaut A, Suchard M, Drummond A (2013) Tracer 1.6. Available in: http://tree.bio.ed.ac.uk/software/tracer/

  • Rao S, Cossé AA, Zilkowski BW, Bartelt RJ (2003) Aggregation pheromone of the cereal leaf beetle. J Chem Ecol 29(9):2165–2175. https://doi.org/10.1023/a:1025698821635

    Article  CAS  PubMed  Google Scholar 

  • Ray AM, Swift IP, McElfresh JS, Alten RL, Millar JG (2012) R)-desmolactone, a female-produced sex pheromone component of the cerambycid beetle Desmocerus californicus californicus (subfamily Lepturinae. J Chem Ecol 38:157–167. https://doi.org/10.1007/s10886-012-0070-5

    Article  CAS  PubMed  Google Scholar 

  • Rees D (2007) Insects of stored grain. Australia, Collingwood VIC, 3066

  • Reid CAM (1995) A cladistic analysis of subfamilial relationships in the Chrysomelidae sensu lato (Chrysomeloidea). In: Pakaluk J, Ślipiński SA (eds) Biology, Phylogeny and Classification of Coleoptera: papers celebrating the 80th birthday of Roy A. Crowson. Muzeum i Instytut Zoologii PAN, Warszawa, pp 559–631

    Google Scholar 

  • Reid CAM (2000) Spilopyrinae Chapuis: a new subfamily in the Chrysomelidae and its systematic placement (Coleoptera). Invertebr Taxon 14(6):837–862

    Article  Google Scholar 

  • Reid CAM (2006) A taxonomic revision of the Australian Chrysomelinae, with a key to the genera (Coleoptera: Chrysomelidae). Zootaxa 1292:1–119. https://doi.org/10.11646/ZOOTAXA.1292.1.1

    Article  Google Scholar 

  • Reinhard J (2004) Insect chemical communication. Chemosense 6(4):2–6

    Google Scholar 

  • Riley EG, Clark SM, Flowers RW, Gilbert AJ (2002) Family 124. Chrysomelidae Latreille 1802. In: Arnett RH, Thomas MC, Skelley PE, Frank JH (eds) Chrysomelinae, in American Beetles, Volume 2. Polyphaga: Scarabaeoidea through Curculionoidea. CRC Press, Boca Raton, pp 648–653

    Google Scholar 

  • Robertson JA, Ślipiński A, Moulton M, Shockley FW, Giorgi A, Lord NP, Mckenna D, Tomaszewska W, Forrester J, Miller KB, Whiting MF, Mchugh JV (2015) Phylogeny and classification of Cucujoidea and the recognition of a new superfamily Coccinelloidea (Coleoptera: Cucujiformia). Syst Entomol 40:745–778. https://doi.org/10.1111/syen.12138

    Article  Google Scholar 

  • Ronquist F, Teslenko M, Van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosa BB, Melo GAR, Barbeitos MS (2019) Parsimony-based partitioning outperforms alternatives in Bayesian analysis of discrete morphological data. Syst Biol 68(4):657–671. https://doi.org/10.1093/sysbio/syz001

    Article  PubMed  Google Scholar 

  • Rup PJ (1986) Mating and its attendant behaviour in Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). J Stored Prod Res 22(2):77–79

    Article  Google Scholar 

  • Rup PJ, Sharma SP (1978) Behavioural response of males and females of Callosobruchus maculatus (F.) to the sex pheromone. Indian J Ecol 1:72–76

    Google Scholar 

  • Rutledge C, Silk PJ, Mayo P (2014) Use of contact chemical cues in prey discrimination by Cerceris fumipennis. Entomol Exp Appl 153:93–105. https://doi.org/10.1111/eea.12233

    Article  CAS  Google Scholar 

  • Santos AT, Ribeiro-Costa CS (2019) Rearrangements in some species groups of Amblycerus Thunberg, 1815 (Coleoptera: Chrysomelidae: Bruchinae) including keys, description of a new species, new host plant and distributional records. Zootaxa 4701(2):101–148. https://doi.org/10.11646/zootaxa.4701.2.1

    Article  Google Scholar 

  • Sari LT, Ribeiro-Costa CS, Pereira PRVS (2003) Biological aspects of Zabrotes subfasciatus (Bohemann, 1833) (Coleoptera, Bruchidae) on Phaseolus vulgaris L., cv. Carioca (Fabaceae), under laboratory conditions. Rev Bras Entomol 47(4):621–624. https://doi.org/10.1590/S0085-56262003000400014

    Article  Google Scholar 

  • Schanz M (1953) Der Geruchssinn des Kartoffelkäfers (Leptinotarsa decemlineata Say). Z Vgl Physiol 35:353–379. https://doi.org/10.1007/BF00297882

    Article  Google Scholar 

  • Schütz S, Weißbecker B, Klein A, Hummel HE (1997) Host plant selection of the Colorado potato beetle as influenced by damage induced volatiles of the potato plant. Naturwissenschaften 84:212–217. https://doi.org/10.1007/s001140050381

    Article  Google Scholar 

  • Sears ALW, Smiley JT, Hilker M, Müller F, Rank NE (2001) Nesting behavior and prey use in two geographically separated populations of the specialist wasp Symmorphus cristatus (Vespidae: Eumeninae). Am Midl Nat 145(2):233–246. https://doi.org/10.1674/0003-0031(2001)145[0233:NBAPUI]2.0.CO;2

    Article  Google Scholar 

  • Segers A, Megido RC, Lognay G, Francis F (2021) Overview of Bruchus rufimanus BOHEMAN 1833 (Coleoptera: Chrysomelidae): biology, chemical ecology and semiochemical opportunities in integrated pest management programs. Crop Protect 140:105411. https://doi.org/10.1016/j.cropro.2020.105411

    Article  CAS  Google Scholar 

  • Sereno PC (2007) Logical basis for morphological characters in phylogenetics. Cladistics 23(6):565–587. https://doi.org/10.1111/j.1096-0031.2007.00161.x

    Article  PubMed  Google Scholar 

  • Shimomura K, Nojima S, Yajima S, Ohsawa K (2008) Homofarnesals female sex attractant pheromone components of the southern cowpea weevil, Callosobruchus chinensis. J Chem Ecol 34:467–477. https://doi.org/10.1007/s10886-008-9451-1

    Article  CAS  PubMed  Google Scholar 

  • Shimomura K, Mimura T, Ishikawa S, Yajima S, Ohsawa K (2010a) Variation in mate recognition specificities among four Callosobruchus seed beetles. Entomol Exp Appl 135(3):315–322. https://doi.org/10.1111/j.1570-7458.2010.00994.x

    Article  Google Scholar 

  • Shimomura K, Akasaka K, Yajima A, Mimura T, Yajima S, Ohsawa K (2010b) Contact sex pheromone components of the seed beetle, Callosobruchus analis (F.). J Chem Ecol 36:955–965. https://doi.org/10.1007/s10886-010-9841-z

    Article  CAS  PubMed  Google Scholar 

  • Shimomura K, Matsui S, Ohsawa K, Yajima S (2016) Saltational evolution of contact sex pheromone compounds of Callosobruchus rhodesianus (Pic). Chemoecology 26:15–23. https://doi.org/10.1007/s00049-015-0204-7

    Article  CAS  Google Scholar 

  • Shimomura K, Koshino H, Yajima A, Matsumoto N, Yajima S, Ohsawa K (2010c) A new sesquiterpenoid produced by female Callosobruchus rhodesianus (Pic): a possible component of the sex attractant pheromone. Tetrahedron Lett 51:6860–6862. https://doi.org/10.1016/j.tetlet.2010.10.100

    Article  CAS  Google Scholar 

  • Shu S, Mbata GN, Cork A, Ramaswamy SB (1999) Sex pheromone of Callosobruchus subinnotatus. J Chem Ecol 25(12):2715–2727. https://doi.org/10.1023/A:1020899407497

    Article  CAS  Google Scholar 

  • Silfverberg H (2010) Family Orsodacnidae C. G. Thomson, 1859. In: Löbl I, Smetana A (eds) Catalogue of Palaearctic Coleoptera. Volume 6. Chrysomeloidea. Apollo Books, Stenstrup

    Google Scholar 

  • Silk PJ, Sweeney J, Wu JP, Price J, Gutowski JM, Kettela EG (2007) Evidence for a male-produced pheromone in Tetropium fuscum (F.) and Tetropium cinnamopterum (Kirby) (Coleoptera: Cerambycidae). Naturwissenschaften 94:697–701. https://doi.org/10.1007/s00114-007-0244-0

    Article  CAS  PubMed  Google Scholar 

  • Silk PJ, Sweeney J, Wu J, Sopow S, Mayo PD, Magee D (2011) Contact sex pheromones identified for two species of longhorned beetles (Coleoptera: Cerambycidae) Tetropium fuscum and T. cinnamopterum in the subfamily Spondylidinae. Environ Entomol 40:714–726. https://doi.org/10.1603/EN10213

    Article  CAS  PubMed  Google Scholar 

  • Silva WD, Millar JG, Hanks LM, Bento JMS (2016) (6E,8Z)-6,8-Pentadecadienal, a novel attractant pheromone produced by males of the cerambycid beetles Chlorida festiva and Chlorida costata. J Chem Ecol 42:1082–1085. https://doi.org/10.1007/s10886-016-0742-7

    Article  CAS  PubMed  Google Scholar 

  • Sollai G, Solari P (2022) An overview of “Insect Biodiversity.” Diversity 14(2):134. https://doi.org/10.3390/d14020134

    Article  Google Scholar 

  • Soroka JJ, Bartelt RJ, Zilkowski BW, Cossé AA (2005) Responses of flea beetle Phyllotreta cruciferae to synthetic aggregation pheromone components and host plant volatiles in field trials. J Chem Ecol 31(8):1829–1843. https://doi.org/10.1007/s10886-005-5929-2

    Article  CAS  PubMed  Google Scholar 

  • Spikes AE, Paschen MA, Millar JG, Moreira JA, Hamel PB, Schiff NM, Ginzel MD (2010) First contact pheromone identified for a longhorned beetle (Coleoptera: Cerambycidae) in the subfamily Prioninae. J Chem Ecol 36:943–954. https://doi.org/10.1007/s10886-010-9837-8

    Article  CAS  PubMed  Google Scholar 

  • Stojković B, Savković U, Đorđević M, Tucić N (2014) Host-shift effects on mating behavior and incipient pre-mating isolation in seed beetle. Behav Ecol 25:553–564. https://doi.org/10.1093/beheco/aru015

    Article  Google Scholar 

  • Stork NE (2018) How many species of insects and other terrestrial arthropods are there on Earth? Annu Rev Entomol 63:31–45. https://doi.org/10.1146/annurev-ento-020117-043348

    Article  CAS  PubMed  Google Scholar 

  • Sugawara F, Matsuda K, Kobayashi A, Yamashita K (1979) Defensive secretion of chrysomelid larvae Linaeidea aenea Linné and Plagiodera versicolora distincta Baly. J Chem Ecol 5(6):929–934

    Article  CAS  Google Scholar 

  • Sugeno W, Hori M, Matsuda K (2006) Identification of the contact sex pheromone of Gastrophysa atrocyanea (Coleoptera, Chrysomelidae). Appl Entomol Zool 41(2):269–276. https://doi.org/10.1303/aez.2006.269

    Article  CAS  Google Scholar 

  • Sun X, Zhang X, Wu G, Li X, Liu F, Xin Z, Zhang J (2017) n-Pentacosane acts as both contact and volatile pheromone in the tea weevil, Myllocerinus aurolineatus. J Chem Ecol 43:557–562. https://doi.org/10.1007/s10886-017-0857-5

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Ohsawa K, Honda H, Yamamoto Y (1981) Copulation release pheromone, erectin, from the azuki bean weevil (Callosobruchus chinensis L.). J Pestic Sci 6:75–82

    Article  CAS  Google Scholar 

  • Tanaka K, Ohsawa K, Honda H, Yamamoto Y (1982) Synthesis of Erectin, a copulation release pheromone of the Azuki Bean Weevil, Callosobruchus chinensis L. J Pestic Sci 7:535–537

    Article  CAS  Google Scholar 

  • Tanton MT (1965) Agar and chemostimulant concentrations and their effect on intake of synthetic food by larvae of the mustard beetle Phaedon cochleariae Fab. Entomol Exp Appl 8:74–82

    Article  CAS  Google Scholar 

  • Tarasov S, Génier F (2015) Innovative Bayesian and parsimony phylogeny of dung beetles (Coleoptera, Scarabaeidae, Scarabaeinae) enhanced by ontology-based partitioning of morphological characters. PLoS ONE 10(3):e0116671. https://doi.org/10.1371/journal.pone.0116671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarasov SI, Solodovnikov AY (2011) Phylogenetic analyses reveal reliable morphological markers to classify mega-diversity in Onthophagini dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae). Cladistics 27(5):490–528. https://doi.org/10.1111/j.1096-0031.2011.00351.x

    Article  PubMed  Google Scholar 

  • Termonia A, Pasteels JM (1999) Larval chemical defence and evolution of host shifts in Chrysomela leaf beetles. Chemoecology 9:13–23

    Article  CAS  Google Scholar 

  • Tihelka E, Cai C, Giacomelli M, Lozano-Fernandez J, Rota-Stabelli O, Huang D, Engel MS, Donoghue PCJ, Pisani D (2021) The evolution of insect biodiversity. Curr Biol 31(19):R1299–R1311. https://doi.org/10.1016/j.cub.2021.08.057

    Article  CAS  PubMed  Google Scholar 

  • Timmermans M, Randoux T, Daloze D, Braekman J-C, Pasteels JM, Lesage L (1992) The chemical defense of Doryphorina beetles (Coleoptera: Chrysomelidae). Biochem Syst Ecol 20(4):343–349

    Article  CAS  Google Scholar 

  • Timmermans MJTN, Barton C, Haran J, Ahrens D, Culverwell CL, Ollikainen A, Dodsworth S, Foster PG, Bocak L, Vogler AP (2015) Family-level sampling of mitochondrial genomes in Coleoptera: compositional heterogeneity and phylogenetics. Genome Biol Evol 8(1):161–175. https://doi.org/10.1093/gbe/evv241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tóth M, Csonka E, Bartelt RJ, Cossé AA, Zilkowski BW, Muto S, Mori K (2005) Pheromonal activity of compounds identified from male Phyllotreta cruciferae: Field tests of racemic mixtures, pure enantiomers, and combinations with allyl isothiocyanate. J Chem Ecol 31(11):2705–2720. https://doi.org/10.1007/s10886-005-7621-y

    Article  CAS  PubMed  Google Scholar 

  • Tóth M, Csonka E, Bartelt RJ, Cossé AA, Zilkowski BW (2011) Similarities in pheromonal communication of flea beetles Phyllotreta cruciferae Goeze and Ph. vittula Redtenbacher (Coleoptera, Chrysomelidae). J Appl Entomol 136(9):688–697. https://doi.org/10.1111/j.1439-0418.2011.01702.x

    Article  CAS  Google Scholar 

  • Tuda M, Rönn J, Buranapanichpan S, Wasanos N, Arnqvist G (2006) Evolutionary diversification of the bean beetle genus Callosobruchus (Coleoptera: Bruchidae): traits associated with stored-product pest status. Mol Ecol 15(12):3541–3551. https://doi.org/10.1111/j.1365-294X.2006.03030.x

    Article  CAS  PubMed  Google Scholar 

  • U.S. Department of Agriculture (n.d.) https://www.fas.usda.gov/2021-export-overview

  • Ueno T, Kuwahara Y, Fujii K, Taper ML, Toquenaga Y, Suzuki T (1990) D-catechin. an oviposition stimulant of azuki bean weevil Callosobruchus chinensis in the host azuki bean. J Pestic Sci 15:573–578

    Article  CAS  Google Scholar 

  • Valkama H, Raty M, Niemela P (1997) Catches of Ips duplicatus and other non-target Coleoptera by Ips typographus pheromone trapping. Entomol Fennica 8:153–159. https://doi.org/10.33338/ef.83934

    Article  Google Scholar 

  • Vencl FV, Leschen RAB (2014) Criocerinae Lattreille 1807. In: Leschen RAB, Beutel RG (eds) Handbook of Zoology. Coleoptera, Beetles. Morphology and Systematics (Phytophaga), vol 3. Walter de Gruyter, Berlin, pp 237–242

    Google Scholar 

  • Ventura MU, Martins MC, Pasini A (2000) Responses of Diabrotica speciosa and Cerotoma arcuata tingomariana (Coleoptera: Chrysomelidae) to volatile attractants. Fla Entomol 83:403–410. https://doi.org/10.2307/3496715

    Article  CAS  Google Scholar 

  • Viana JH (2016) Nomenclatural changes and lectotype designations in the seed-beetle genus Sennius Bridwell: with the synonymization of Megasennius Whitehead & Kingsolver (Coleoptera: Chrysomelidae: Bruchinae). Zootaxa 4175(3):249–260. https://doi.org/10.11646/zootaxa.4175.3.4

    Article  PubMed  Google Scholar 

  • Vidal DM, Fonseca MG, Zarbin PHG (2010) Enantioselective synthesis and absolute configuration of the sex pheromone of Hedypathes betulinus (Coleoptera: Cerambycidae). Tetrahedron Lett 51:6704–6706. https://doi.org/10.1016/j.tetlet.2010.10.024

    Article  CAS  Google Scholar 

  • Visser JH, Straten SV, Maarse H (1979) Isolation and identification of volatiles in the foliage of potato, Solanum tuberosum, a host plant of the Colorado beetle, Leptinotarsa decemlineata. J Chem Ecol 5(1):13–25

    Article  CAS  Google Scholar 

  • Vuts J, Powers SJ, Caulfield JC, Pickett JA, Birkett MA (2015a) Multiple roles of a male-specific compound in the sexual behavior of the dried bean beetle, Acanthoscelides Obtectus. J Chem Ecol 41:287–293. https://doi.org/10.1007/s10886-015-0560-3

    Article  CAS  PubMed  Google Scholar 

  • Vuts J, Francke W, Mori K, Zarbin PHG, Hooper AM, Millar JG, Pickett JA, Tóth M, Chamberlain K, Caulfield JC, Woodcock CM, Tröger AG, Csonka EB, Birkett MA (2015b) Pheromone bouquet of the dried bean beetle, Acanthoscelides obtectus (Col.: Chrysomelidae), Now Complete. Eur J Org Chem 22:4843–4846. https://doi.org/10.1002/ejoc.201500196

    Article  CAS  Google Scholar 

  • Wallace JB, Blum MS (1969) Refined defensive mechanisms in Chrysomela scripta. Ann Entomol Soc Am 62(3):503–506

    Article  CAS  Google Scholar 

  • Warren DL, Geneva AJ, Lanfear R (2017) RWTY (R We There Yet): an R package for examining convergence of Bayesian phylogenetic analyses. Mol Biol Evol 34:1016–1020

    CAS  PubMed  Google Scholar 

  • Wiley EO, Lieberman BS (2011) Phylogenetics: Theory and Practice of Phylogenetic Systematics, 2nd Edition

  • Wilgenbusch JC, Warren DL, Swofford DL (2004) AWTY: a system for graphical exploration of MCMC convergence in Bayesian phylogenetic inference. Available in: http://ceb.csit.fsu.edu/awty

  • Williams CE (1992) Movement of the dogbane beetle, Chrysochus auratus (Coleoptera: Chrysomelidae) in a patchy environment. Banisteria 1:8–10

    CAS  Google Scholar 

  • Wyatt TD (2003) Pheromones and animal behaviour: communication by smell and taste. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Xue HJ, Wei JN, Magalhães S, Zhang B, Song KQ, Liu J, Li WZ, Yang XK (2016) Contact pheromones of 2 sympatric beetles are modified by the host plant and affect mate choice. Behav Ecol 27(3):895–902. https://doi.org/10.1093/beheco/arv238

    Article  CAS  Google Scholar 

  • Xue HJ, Segraves KA, Wei J, Zhang B, Nie RE, Li WZ, Yang XK (2018) Chemically mediated sexual signals restrict hybrid speciation in a flea beetle. Behav Ecol 29(6):1462–1471. https://doi.org/10.1093/beheco/ary105

    Article  Google Scholar 

  • Yajima A, Akasaka K, Yamamoto M, Ohmori S, Nukada T, Yabuta G (2007) Direct Determination of the Stereoisomeric Composition of Callosobruchusic Acid, the Copulation Release Pheromone of the Azuki Bean Weevil, Callosobruchus chinensis L., by the 2D-Ohrui-Akasaka Method. J Chem Ecol 33(7):1328–1335. https://doi.org/10.1007/s10886-007-9311-4

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Zhang XF, Gao YL, Chen D, She DM, Zhang T, Ning J (2017) Male-produced aggregation pheromone of coffee bean weevil, Araecerus fasciculatus. J Chem Ecol 43:978–985. https://doi.org/10.1007/s10886-017-0894-0

    Article  CAS  PubMed  Google Scholar 

  • Zavaleta E (2000) The economic value of controlling an invasive shrub. AMBIO: J Hum Environ 29(8):462–467. https://doi.org/10.1579/0044-7447-29.8.462

    Article  Google Scholar 

  • Zhang Z-Q, McEvoy PB (1994) Attraction of Longitarsus jacobaeae males to cues associated with conspecific females (Coleoptera: Chrysomelidae). Environ Entomol 23(3):732–737. https://doi.org/10.1093/ee/23.3.732

    Article  Google Scholar 

  • Zhang B, Xue HJ, Song KQ, Liu J, Li WZ, Nie RE, Yang XK (2014) Male mate recognition via cuticular hydrocarbons facilitates sexual isolation between sympatric leaf beetle sister species. J Insect Physiol 70:15–21. https://doi.org/10.1016/j.jinsphys.2014.08.006

    Article  CAS  PubMed  Google Scholar 

  • Zhang LJ, Wu L, Wei CY, Liu XL, Xue HJ, Yang XK, Nie RE (2018) The complete mitochondrial genome of the cowpea weevil, Callosobruchus maculates (Coleoptera: Chrysomelidae: Bruchinae) and a related phylogenetic analysis of Chrysomelidae. Mitochondrial DNA Part B 3(2):645–647. https://doi.org/10.1080/23802359.2017.1413308

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Song N, Yin X (2022) Higher-level phylogeny of Chrysomelidae based on expanded sampling of mitogenomes. PLOS ONE 17(1):e0258587. https://doi.org/10.1371/journal.pone.0258587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zilkowski BW, Bartelt RJ, Cossé AA, Petroski RJ (2006) Male-produced aggregation pheromone compounds from the eggplant flea beetle (Epitrix fuscula): Identification, synthesis, and field biossays. J Chem Ecol 32:2543–2558. https://doi.org/10.1007/s10886-006-9163-3

    Article  CAS  PubMed  Google Scholar 

  • Zilkowski BW, Bartelt RJ, Vermillion K (2008) Analysis of 2,4,6-Nonatrienal geometrical isomers from male flea beetles, Epitrix hirtipennis and E. fuscula. J Agric Food Chem 56(13):4982–4986. https://doi.org/10.1021/jf8005273

    Article  CAS  PubMed  Google Scholar 

  • Zou Y, Millar JG (2015) Chemistry of the pheromones of mealybug and scale insects. Nat Prod Rep 32(7):1067–1113. https://doi.org/10.1039/c4np00143e

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), the Instituto Nacional de Ciências e Tecnologia de Semioquímicos na Agricultura (INCT), and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), for financial support. The Academic Publishing Advisory Center (Centro de Assessoria de Publicação Acadêmica, CAPA—https://www.capa.ufpr.br) of the Federal University of Paraná (UFPR) for assistance with English language developmental editing. We would also like to thank Dr. Mário Jardim Cupello for his contribution to the discussion on phylogenetic analysis. Dr. Michael Geiser and Dr. Adelita Maria Linzmeier for sending us literature on the taxonomy of some Chrysomelidae taxa.

Funding

This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico [142496/2019-7, 465511/2014-7], Coordenação de Aperfeiçoamento de Pessoal de Nível Superior [88882.344270/2019-01], Fundação Araucária [103/2020], Instituto Nacional de Ciências e Tecnologia de Semioquímicos na Agricultura/Fundação de Amparo à Pesquisa do Estado de São Paulo [50871-0/2014], and FAPESP—Fundação de Amparo à Pesquisa do Estado de São Paulo (grant # 2020/13943-4 and 2022/09215-9 to B.B. Rosa).

Author information

Authors and Affiliations

Authors

Contributions

Aluska Tavares dos Santos: Conceptualization, Data Curation, Investigation, Methodology, Visualization, Writing—Original Draft, Writing—Review & Editing. João Pedro Albuquerque de Souza: Investigation, Methodology, Visualization, Writing—Review & Editing. Isaac Reis Jorge: Formal analysis, Investigation, Methodology, Visualization, Writing—Review & Editing. Samara M. M. Andrade: Investigation, Visualization, Writing—Review & Editing. Mauricio Oswaldo Moura: Formal analysis, Visualization, Writing—Review & Editing. Brunno Bueno Rosa: Formal analysis, Methodology, Visualization, Writing—review & Editing. Paulo Henrique Gorgatti Zarbin: Supervision, Visualization, Writing—Review & Editing.

Corresponding author

Correspondence to Paulo H. G. Zarbin.

Ethics declarations

Competing Interests

The authors declare no conflict of interest.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, A.T., Souza, J.P.A., Jorge, I.R. et al. Can Pheromones Contribute to Phylogenetic Hypotheses? A Case Study of Chrysomelidae. J Chem Ecol 49, 611–641 (2023). https://doi.org/10.1007/s10886-023-01450-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-023-01450-1

Keywords

Navigation