Skip to main content
Log in

NRF2 is essential for iron-overload stimulated osteoclast differentiation through regulation of redox and iron homeostasis

  • Research
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Iron overload enhances osteoclastic bone resorption and induces osteoporosis. Excess iron is highly toxic. The modulation of redox and iron homeostasis is critical for osteoclast differentiation under iron-overload condition. Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor that regulates the cellular defense against oxidative stress and iron overload through the expression of genes involved in anti-oxidative processes and iron metabolism. Our studies demonstrated that NRF2 activation was suppressed during osteoclast differentiation. Under iron-overload condition, NRF2 and its mediated antioxidant and iron metabolism genes were activated by reactive oxygen species (ROS), which enhanced antioxidant capability. NRF2 mediated the upregulation of iron exporter ferroportin 1 (FPN1) and iron storage protein ferritin, contributing to decreased levels of intracellular iron. Nfe2l2 knockout induced oxidative stress and promoted osteoclast differentiation under normal condition, but induced ferroptosis under iron-overload condition. Nfe2l2 knockout alleviated iron overload induced bone loss by inhibiting osteoclast differentiation. Our results suggest that NRF2 activation is essential for osteoclast differentiation by enhancing antioxidant capability and reducing intracellular iron under iron-overload condition. Targeting NRF2 to induce ferroptosis could be a potential therapy for the treatment of iron-overload induced osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets presented in the current study are available from the corresponding author on reasonable request.

Abbreviations

4-HNE:

4-hydroxynonenal

AREs:

Antioxidant response elements

BMD:

Bone mineral density

BS:

Bone surface

BV:

Bone volume

CAT:

Catalase

DFO:

Deferoxamine

FTH:

Ferritin heavy chain

FTL:

Ferritin light chain

GCLC:

Glutamate-cysteine ligase catalytic subunit

GSH-Px:

Glutathione peroxidase

HO-1:

Heme oxygenase 1

Keap1:

Kelch-like ECH-associated protein 1

LIP:

Labile iron pool

NAC:

N-acetylcysteine

NQO-1:

NAD(P)H dehydrogenase quinone 1

MDA:

Malondialdehyde

NRF2:

Nuclear factor erythroid 2-related factor 2

FPN1:

Ferroportin 1

RANKL:

Receptor activator of nuclear factor kappa-Β ligand

ROS:

Reactive oxygen species

Tb.Th.:

Trabecular thickness

Tb.Sp.:

Trabecular separation

Tb.N.:

Trabecular number

TfR1:

Transferrin receptor 1

TV:

Tissue volume

TRAP:

Tartrate-resistant acid phosphatase

References

  • Babaei M, Bijani A, Heidari P, Hosseini SR, Heidari B. Serum ferritin levels and bone mineral density in the elderly. Caspian J Intern Med. 2018;9(3):232–8.

    PubMed  PubMed Central  Google Scholar 

  • Che J, Yang J, Zhao B, Zhang G, Wang L, Peng S, Shang P. The effect of abnormal iron metabolism on osteoporosis. Biol Trace Elem Res. 2020;195:353–65.

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Yu C, Kang R, Tang D. Iron metabolism in ferroptosis. Front Cell Dev Biol. 2020;8:590226.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen C, Hu F, Miao S, Sun L, Jiao Y, Xu M, Huang X, Yang Y, Zhou R. Transcription factor KLF7 promotes osteoclast differentiation by suppressing HO-1. Front Genet. 2022;13:798433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chon SJ, Choi YR, Roh YH, Yun BH, Cho S, Choi YS, Lee BS, Seo SK. Association between levels of serum ferritin and bone mineral density in Korean premenopausal and postmenopausal women: KNHANES 2008-2010. PloS One. 2014;9:e114972.

    Article  PubMed  PubMed Central  Google Scholar 

  • Das BK, Wang L, Fujiwara T, Zhou J, Aykin-Burns N, Krager KJ, Lan R, Mackintosh SG, Edmondson R, Jennings ML, Wang X, Feng JQ, Barrientos T, Gogoi J, Kannan A, Gao L, Xing W, Mohan S, Zhao H. Transferrin receptor 1-mediated iron uptake regulates bone mass in mice via osteoclast mitochondria and cytoskeleton. Elife. 2022;11:e73539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dodson M, Castro-Portuguez R, Zhang DD. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol. 2019;23:101107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu Z, Wang H, Xia J, Yang Y, Jin Z, Xu H, Shi J, De Domenico I, Tricot G, Zhan F. Decreased ferroportin promotes myeloma cell growth and osteoclast differentiation. Cancer Res. 2015;75:2211–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernansanz-Agustín P, Enríquez JA. Generation of reactive oxygen species by mitochondria. Antioxidants. 2021;10:415.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hyeon S, Lee H, Yang Y, Jeong W. Nrf2 deficiency induces oxidative stress and promotes RANKL-induced osteoclast differentiation. Free Radic Biol Med. 2013;65:789–99.

    Article  CAS  PubMed  Google Scholar 

  • Ishii KA, Fumoto T, Iwai K, Takeshita S, Ito M, Shimohata N, Aburatani H, Taketani S, Lelliott CJ, Vidal-Puig A, Ikeda K. Coordination of PGC-1beta and iron uptake in mitochondrial biogenesis and osteoclast activation. Nat Med. 2009;15:259–66.

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021;22:266–82.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung DW, Park JH, Kim DH, Choi M, Kim S, Kim H, Seul DE, Park SG, Jung JH, Han K, Park YG. Association between serum ferritin and hemoglobin levels and bone health in Korean adolescents: a nationwide population-based study. Medicine. 2017;96:e9403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanzaki H, Shinohara F, Kajiya M, Kodama T. The Keap1/Nrf2 protein axis plays a role in osteoclast differentiation by regulating intracellular reactive oxygen species signaling. J Biol Chem. 2013;288:23009–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kansanen E, Kuosmanen SM, Leinonen H, Levonen AL. The Keap1-Nrf2 pathway: mechanisms of activation and dysregulation in cancer. Redox Biol. 2013;1:45–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ke K, Safder MA, Sul OJ, Kim WK, Suh JH, Joe Y, Chung HT, Choi HS. Hemeoxygenase-1 maintains bone mass via attenuating a redox imbalance in osteoclast. Mol Cell Endocrinol. 2015;409:11–20.

    Article  CAS  PubMed  Google Scholar 

  • Kerins MJ, Ooi A. The roles of NRF2 in modulating cellular iron homeostasis. Antioxid Redox Signal. 2018;29:1756–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim BJ, Lee SH, Koh JM, Kim GS. The association between higher serum ferritin level and lower bone mineral density is prominent in women ≥45 years of age (KNHANES 2008-2010). Osteoporos Int. 2013;24:2627–37.

    Article  CAS  PubMed  Google Scholar 

  • Kim BJ, Ahn SH, Bae SJ, Kim EH, Lee SH, Kim HK, Choe JW, Koh JM, Kim GS. Iron overload accelerates bone loss in healthy postmenopausal women and middle-aged men: a 3-year retrospective longitudinal study. J Bone Miner Res. 2012;27:2279–90.

    Article  CAS  PubMed  Google Scholar 

  • Lee NK, Choi YG, Baik JY, Han SY, Jeong DW, Bae YS, Kim N, Lee SY. A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood. 2005;106(3):852–9.

    Article  CAS  PubMed  Google Scholar 

  • Park JH, Lee NK, Lee SY. Current understanding of RANK signaling in osteoclast differentiation and maturation. Mol Cells. 2017;40(10):706–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park CK, Lee Y, Kim KH, Lee ZH, Joo M, Kim HH. Nrf2 is a novel regulator of bone acquisition. Bone. 2014;63:36–46.

    Article  CAS  PubMed  Google Scholar 

  • Takayanagi H. RANKL as the master regulator of osteoclast differentiation. J Bone Miner Metab. 2021;39:13–8.

    Article  CAS  PubMed  Google Scholar 

  • Qin JJ, Cheng XD, Zhang J, Zhang WD. Dual roles and therapeutic potential of Keap1-Nrf2 pathway in pancreatic cancer: a systematic review. Cell Commun Signal. 2019;17:121.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun X, Xie Z, Hu B, Zhang B, Ma Y, Pan X, Huang H, Wang J, Zhao X, Jie Z, Shi P, Chen Z. The Nrf2 activator RTA-408 attenuates osteoclastogenesis by inhibiting STING dependent NF-κb signaling. Redox Biol. 2020;28:101309.

    Article  CAS  PubMed  Google Scholar 

  • Udagawa N, Koide M, Nakamura M, Nakamichi Y, Yamashita T, Uehara S, Kobayashi Y, Furuya Y, Yasuda H, Fukuda C, Tsuda E. Osteoclast differentiation by RANKL and OPG signaling pathways. J Bone Miner Metab. 2021;39:19–26.

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Fang B, Fujiwara T, Krager K, Gorantla A, Li C, Feng JQ, Jennings ML, Zhou J, Aykin-Burns N, Zhao H. Deletion of ferroportin in murine myeloid cells increases iron accumulation and stimulates osteoclastogenesis in vitro and in vivo. J Biol Chem. 2018;293:9248–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie W, Lorenz S, Dolder S, Hofstetter W. Extracellular iron is a modulator of the differentiation of osteoclast lineage cells. Calcif Tissue Int. 2016;98(3):275–83.

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Sun W, Li Y, Ling S, Zhao C, Zhong G, Zhao D, Song J, Song H, Li J, You L, Nie G, Chang Y, Li Y. The regulation of iron metabolism by hepcidin contributes to unloading-induced bone loss. Bone. 2017;94:152–61.

    Article  CAS  PubMed  Google Scholar 

  • Xue P, Hu X, Powers J, Nay N, Chang E, Kwon J, Wong SW, Han L, Wu TH, Lee DJ, Tseng H, Ko CC. CDDO-Me, Sulforaphane and tBHQ attenuate the RANKL-induced osteoclast differentiation via activating the NRF2-mediated antioxidant response. Biochem Biophys Res Commun. 2019;511:637–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin Y, Corry KA, Loughran JP, Li J. Moderate Nrf2 activation by genetic disruption of Keap1 has sex-specific effects on bone mass in mice. Sci Rep. 2020;10:348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan Y, Yang J, Zhuge A, Li L, Ni S. Gut microbiota modulates osteoclast glutathione synthesis and mitochondrial biogenesis in mice subjected to ovariectomy. Cell Prolif. 2022;55:e13194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Zhao H, Yao G, Qiao P, Li L, Wu S. Therapeutic potential of iron chelators on osteoporosis and their cellular mechanisms. Biomed Pharmacother. 2021a;137:111380.

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Zhang J, Jin Y, Yao G, Zhao H, Qiao P, Wu S. Nrf2 is a potential modulator for orchestrating iron homeostasis and redox balance in cancer cells. Front Cell Dev Biol. 2021b;9:728172.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Zheng L, Wang Z, Pei H, Hu W, Nie J, Shang P, Li B, Hei TK, Zhou G. Lowering iron level protects against bone loss in focally irradiated and contralateral femurs through distinct mechanisms. Bone. 2019a;120:50–60.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Hu W, Ding C, Yao G, Zhao H, Wu S. Deferoxamine inhibits iron-uptake stimulated osteoclast differentiation by suppressing electron transport chain and MAPKs signaling. Toxicol Lett. 2019b;313:50–9.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Meng X, Ding C, Xie L, Yang P, Shang P. Regulation of osteoclast differentiation by static magnetic fields. Electromagn Biol Med. 2017;36:8–19.

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Guizhou Provincial Science and Technology Projects (Qian Ke He Ji Chu-ZK[2021]-Yi Ban 398), the National Natural Science Foundation of China (82060168, 82360176), and the Guizhou Education Department Youth Science and Technology Talents Growth Project (Qian Jiao He KY Zi [2021]199).

Author information

Authors and Affiliations

Authors

Contributions

Jian Zhang and Lingyan Zhang contributed to the study conception and design. Material preparation, data collection and analysis were performed by Gang Yao, Hai Zhao, and Shuguang Wu. The manuscript and figures was prepared by Jian Zhang. All authors reviewed the manuscirpt.

Corresponding author

Correspondence to Jian Zhang.

Ethics declarations

Ethics approval

The animal study was approved by the Animal Ethics and Welfare Committee at Guizhou University of Traditional Chinese Medicine. All animal experiments complied with the National Research Council’s Guide for the Care and Use of Laboratory Animals.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

Figure S1 (A) The protein expression of Nrf2 in Nfe2l2 knockout RAW264.7 cells. (B) The sequencing results of Nfe2l2 gene in WT and KO RAW264.7 cells. Figure S2 (A) The protein expression of Nrf2 in Nfe2l2 knockout C57BL/6J mice. (B) The sequencing results of Nfe2l2 gene in WT and KO C57BL/6J mice. (DOCX 161 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhang, L., Yao, G. et al. NRF2 is essential for iron-overload stimulated osteoclast differentiation through regulation of redox and iron homeostasis. Cell Biol Toxicol 39, 3305–3321 (2023). https://doi.org/10.1007/s10565-023-09834-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-023-09834-5

Keywords

Navigation