Skip to main content
Log in

Run-time reconfigurable nanomagnetic logic gates and comparator designs using very high-permeability material

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Nanomagnetic logic is a recent technology used in electronic devices and systems. The current challenge in circuit miniaturization has prompted a move away from the traditional metal-oxide-semiconductor technology. Nanomagnetic logic-based devices have no leakage current, and they are also non-volatile. In this paper, we propose run-time reconfigurable layout designs for the logic gates, and to show the applicability of the logic gates, we implement a single-bit comparator design. For the logic gate designs, we use slant-edge nanomagnets of different shapes as inputs. The proposed layout designs are verified using the MuMax3 micro-magnetic simulation tool, and results are compared with a previous approach. The implementation of a single-bit comparator design can significantly reduce the number of nanodots required, typically by \(\sim\)50–80%, as well as the area occupancy, which can be reduced by \(\sim\)56–99%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Availability of data and materials—NA.

References

  1. IRDS, systems, architectures, team: international roadmap for devices and systems: executive summary. IEEE Adv. Technol. Human. 63 (2020)

  2. Cowburn, R.P., Welland, M.E.: Room temperature magnetic quantum cellular automata. Science 287(5457), 1466–1468 (2000). https://doi.org/10.1126/science.287.5457.1466

    Article  Google Scholar 

  3. Porod, W., Niemer, M.: Better computing with magnets. IEEE Spectrum 172(September), 45 (2015)

    Google Scholar 

  4. Cowburn, R.P.: Probing antiferromagnetic coupling between nanomagnets. Phys. Rev. B Condens. Matter Mater. Phys. 65(9), 1–4 (2002). https://doi.org/10.1103/PhysRevB.65.092409

    Article  Google Scholar 

  5. Csaba, G., Imre, A., Bernstein, G.H., Porod, W., Metlushko, V.: Nanocomputing by field-coupled nanomagnets. IEEE Trans. Nanotechnol. 1(4), 209–213 (2002). https://doi.org/10.1109/TNANO.2002.807380

    Article  Google Scholar 

  6. Bernstein, G.H., Imre, A., Metlushko, V., Orlov, A., Zhou, L., Ji, L., Csaba, G., Porod, W.: Magnetic QCA systems. Microelectron. J. 36(7), 619–624 (2005). https://doi.org/10.1016/j.mejo.2004.12.002

    Article  Google Scholar 

  7. Imre, A., Csaba, G., Ji, L., Orlov, A., Bernstein, G.H., Porod, W.: Majority logic gate for magnetic quantum-dot cellular automata. Science 311(5758), 205–208 (2006). https://doi.org/10.1126/science.1120506

    Article  Google Scholar 

  8. Niemier, M., Alam, M., Hu, X.S., Bernstein, G., Porod, W., Putney, M., Deangelis, J.: Clocking structures and power analysis for nanomagnet-based logic devices. In: Proceedings of the International Symposium on Low Power Electronics and Design, pp. 26–31 (2007). https://doi.org/10.1145/1283780.1283787

  9. Alam, M.T., Siddiq, M.J., Bernstein, G.H., Niemier, M., Porod, W., Hu, X.S.: On-chip clocking for nanomagnet logic devices. IEEE Trans. Nanotechnol. 9(3), 348–351 (2010). https://doi.org/10.1109/TNANO.2010.2041248

    Article  Google Scholar 

  10. Varga, E., Niemier, M.T., Csaba, G., Bernstein, G.H., Porod, W.: Experimental realization of a nanomagnet full adder using slanted-edge magnets. IEEE Trans. Magn. 49(7), 4452–4455 (2013). https://doi.org/10.1109/TMAG.2013.2249576

    Article  Google Scholar 

  11. Dadjouyan, A.A., Sayedsalehi, S., Faghih Mirzaee, R., Jafarali Jassbi, S.: Design and simulation of reliable and fast nanomagnetic conservative quantum-dot cellular automata (NCQCA) gate. J. Comput. Electronics 20(5), 1992–2000 (2021). https://doi.org/10.1007/s10825-021-01763-y

    Article  Google Scholar 

  12. Varga, E., Niemier, M.T., Bernstein, G.H., Porod, W., Hu, X.S.: Programmable nanomagnet-logic majority gate. Device Res. Conf. Conf. Digest DRC 310(574), 85–86 (2010). https://doi.org/10.1109/DRC.2010.5551921

    Article  Google Scholar 

  13. Kiermaier, J., Breitkreutz, S., Eichwald, I., Ju, X., Csaba, G., Schmitt-Landsiedel, D., Becherer, M.: Programmable input for nanomagnetic logic devices. EPJ Web Conf. 40, 2–5 (2013). https://doi.org/10.1051/epjconf/20134016007

    Article  Google Scholar 

  14. Jaiswal, V., Sasamal, T.N.: A Novel approach to design NML-based programmable input rotating majority gate. In: 2023 IEEE Radio and Antenna Days of the Indian Ocean (RADIO), pp. 1–2 (2023). https://doi.org/10.1109/RADIO58424.2023.10146094

  15. Siddiq, M.A.J., Butler, K., Dey, H., Shah, F.A., Li, P., Varga, E., Orlov, A., Csaba, G., Niemier, M., Porod, W., Bernstein, G.H.: Nanomagnet logic gate with programmable-electrical input. IEEE Trans. Magn. 50(11) (2014). https://doi.org/10.1109/TMAG.2014.2325853

  16. Li, Z., Kwon, B.S., Krishnan, K.M.: Misalignment-free signal propagation in nanomagnet arrays and logic gates with 45\(^\circ\)-clocking field. J. Appl. Phys. 115(17), 1–4 (2014). https://doi.org/10.1063/1.4859996

    Article  Google Scholar 

  17. Li, Z., Krishnan, K.M.: A 3-input all magnetic full adder with misalignment-free clocking mechanism. J. Appl. Phys. 121(2) (2017). https://doi.org/10.1063/1.4974109

  18. Jaiswal, V., Sasamal, T.N.: Novel approach for the design of efficient full adder in MQCA. J. Supercomput. (0123456789) (2022). https://doi.org/10.1007/s11227-022-04989-0

  19. Majeed, A.H., Zainal, M.S., Alkaldy, E., Nor, D.M.: Single-bit comparator in quantum-dot cellular automata (QCA) technology using novel QCA-XNOR gates. J. Electronic Sci. Technol. 19(3), 263–273 (2021). https://doi.org/10.1016/J.JNLEST.2020.100078

    Article  Google Scholar 

  20. Khan, A., Arya, R.: High performance nanocomparator: a quantum dot cellular automata-based approach. J. Supercomput. 78(2), 2337–2353 (2022). https://doi.org/10.1007/S11227-021-03961-8/TABLES/4

    Article  Google Scholar 

  21. Sasamal, T.N., Saini, G., Jaiswal, V.: High Speed Comparator and Parity generator in QCA based on optimal XOR structure. In: 2022 IEEE 7th Forum on Research and Technologies for Society and Industry Innovation (RTSI) (2022). https://doi.org/10.1109/RTSI55261.2022.9905214

  22. Newaz Bahar, A., Roy, K., Asaduzzaman, M., Maksudur, M., Bhuiyan, R.: Design and Implementation of 1-bit Comparator in Quantum-dot Cellular Automata (QCA). Cumhuriyet Univ. Faculty Sci. Sci. J. (CSJ) 38(1) (2017). https://doi.org/10.17776/csj.72358

  23. Kumar Bhoi, B., Kumar Misra, N., Pradhan, M.: Design of magnetic dipole based 3D integration nano-circuits for future electronics application. Int. J. Nano Dimens. 9(4), 374–385 (2018)

    Google Scholar 

  24. Zhang, B., Yang, X., Wang, Z., Zhang, M.: Innovative orderly programmable in-plane majority gates using trapezoid shape nanomagnet logic devices. Micro Nano Lett. 9(5), 359–362 (2014). https://doi.org/10.1049/MNL.2013.0695

    Article  Google Scholar 

  25. Sivasubramani, S., Mattela, V., Rangesh, P., Pal, C., Acharyya, A.: Nanomagnetic logic based runtime Reconfigurable area efficient and high speed adder design methodology. Nanotechnology 31(18) (2020). https://doi.org/10.1088/1361-6528/ab704b

  26. Alam, M.T., Kurtz, S.J., Siddiq, M.A.J., Niemier, M.T., Bernstein, G.H., Hu, X.S., Porod, W.: On-chip clocking of nanomagnet logic lines and gates. IEEE Trans. Nanotechnol. 11(2), 273–286 (2012). https://doi.org/10.1109/TNANO.2011.2169983

    Article  Google Scholar 

  27. Cairo, F., Vacca, M., Graziano, M., Zamboni, M.: Domain Magnet Logic (DML): A new approach to magnetic circuits. In: Proceedings of the IEEE Conference on Nanotechnology (Dml), 956–961 (2014). https://doi.org/10.1109/NANO.2014.6968053

  28. Vacca, M., Cairo, F., Turvani, G., Riente, F., Zamboni, M., Graziano, M.: Virtual clocking for nanomagnet logic. IEEE Trans. Nanotechnol. 15(6), 962–970 (2016). https://doi.org/10.1109/TNANO.2016.2617866

    Article  Google Scholar 

  29. Vansteenkiste, A., Leliaert, J., Dvornik, M., Helsen, M., Garcia-Sanchez, F., Van Waeyenberge, B.: The design and verification of MuMax3. AIP Adv. 4(10), 22 (2014) https://arxiv.org/abs/1406.7635arXiv:1406.7635. https://doi.org/10.1063/1.4899186

  30. Jaiswal, V., Sasamal, T.N.: A Novel Approach to Design Multiplexer using Magnetic Quantum-Dot Cellular Automata. IEEE Embed. Syst. Lett., 1 (2022). https://doi.org/10.1109/LES.2022.3207193

  31. Rodrigues, D.C.M., Klautau, A.B., Edström, A., Rusz, J., Nordström, L., Pereiro, M., Hjörvarsson, B., Eriksson, O.: Magnetic anisotropy in permalloy: hidden quantum mechanical features. Phys. Rev. B 97(22), 1–6 (2018) https://arxiv.org/abs/1702.05414arXiv:1702.05414. https://doi.org/10.1103/PhysRevB.97.224402

  32. Gavagnin, M., Wanzenboeck, H.D., Belić, D., Bertagnolli, E.: Synthesis of individually tuned nanomagnets for nanomagnet logic by direct write focused electron beam induced deposition. ACS Nano 7(1), 777–784 (2013). https://doi.org/10.1021/nn305079a

    Article  Google Scholar 

  33. Pulecio, J.F., Pendru, P.K., Kumari, A., Bhanja, S.: Magnetic cellular automata wire architectures. IEEE Trans. Nanotechnol. 10(6), 1243–1248 (2011). https://doi.org/10.1109/TNANO.2011.2109393

    Article  Google Scholar 

  34. Mattela, V., Debroy, S., Sivasubramani, S., Acharyya, A.: A novel and reliable interlayer exchange coupled nanomagnetic universal logic gate design. Nanotechnology 32(9) (2021). https://doi.org/10.1088/1361-6528/abcac9

Download references

Funding

The authors did not receive any support from any organization for the work presented in this submission.

Author information

Authors and Affiliations

Authors

Contributions

VJ and TNS were involved in the design of the layout, simulation studies, and analysis, and they both contributed to the writing of the manuscript. VJ initially drafted the manuscript, which was subsequently improved by both VJ and TNS. All authors have reviewed and given their approval for the final version of the manuscript.

Corresponding author

Correspondence to Vineet Jaiswal.

Ethics declarations

Conflict of interest

The authors of this article state that they do not have any conflicts of interest to declare.

Ethical approval

None of the authors of this article conducted any studies involving human participants or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaiswal, V., Sasamal, T.N. Run-time reconfigurable nanomagnetic logic gates and comparator designs using very high-permeability material. J Comput Electron 22, 1748–1759 (2023). https://doi.org/10.1007/s10825-023-02105-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-023-02105-w

Keywords

Navigation