Skip to main content
Log in

Investigation of miR-26b and miR-27b expressions and the effect of quercetin on fibrosis in experimental pulmonary fibrosis

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

In this study, investigation of the effects of Quercetin on Bleomycin-induced pulmonary fibrosis and fibrosis-associated molecules miR-26b and miR-27b was aimed. Control group was given 10% saline on the 0th day, and saline was administered for 21 days starting from the 8th day. Group 2 was given 50 mg/kg Quercetin for 21 days starting from the 8th day. Group 3 was given 10 mg/kg Bleomycin Sulfate on day 0, and sacrificed on the 22nd and 29th day. Group 4 was given 10 mg/kg Bleomycin Sulfate on the 0th day, and was given 50 mg/kg Quercetin for 14 days, and 21 days starting from day 8. Lung tissues were examined using light and electron microscopic, immunohistochemical and molecular biological methods. Injury groups revealed impaired alveolar structure, collagen accumulation and increased inflammatory cells in interalveolar septum. Fibrotic response was decreased and the alveolar structure was improved with Quercetin treatment. α-SMA expressions were higher in the injury groups, but lower in the treatment groups compared to the injury groups. E-cadherin expressions were decreased in the injury groups and showed stronger immunoreactivity in the treatment groups compared to the injury groups. miR-26b and miR-27b expressions were lower in the injury groups than the control groups, and higher in the treatment groups than the injury groups. Quercetin can be considered as a new treatment agent in the idiopathic pulmonary fibrosis, since it increases the expression levels of miR-26b and miR-27b which decrease in fibrosis, and has therapeutic effects on the histopathological changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ackermann M, Kim YO, Wagner WL, Schuppan D, Valenzuela CD, Mentzer SJ, Kreuz S, Stiller D, Wollin L, Konerding MA (2017) Effects of nintedanib on the microvascular architecture in a lung fibrosis model. Angiogenesis 20(3):359–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali RMM, Ghonimy MBI (2021) Post-COVID-19 Pneumonia lung fibrosis: a worrisome sequelae in surviving patients. Egypt J Radiol Nuclear Med 52(1):1–8

    Article  Google Scholar 

  • Barkauskas CE, Cronce MJ, Rackley CR, Bowie EJ, Keene DR, Stripp BR, Randell SH, Noble PW, Hogan BL (2013) Type 2 alveolar cells are stem cells in adult lung. J Clin Invest 123(7):3025–3036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boesch-Saadatmandi C, Loboda A, Wagner AE, Stachurska A, Jozkowicz A, Dulak J, Döring F, Wolffram S, Rimbach G (2011) Effect of quercetin and its metabolites isorhamnetin and quercetin-3-glucuronide on inflammatory gene expression: role of miR-155. J Nutr Biochem 22(3):293–299

    Article  CAS  PubMed  Google Scholar 

  • Boesch-Saadatmandi C, Wagner AE, Wolffram S, Rimbach G (2012) Effect of quercetin on inflammatory gene expression in mice liver in vivo-role of redox factor 1, miRNA-122 and miRNA-125b. Pharmacol Res 65(5):523–530

    Article  CAS  PubMed  Google Scholar 

  • Choi J, Park JE, Tsagkogeorga G, Yanagita M, Koo BK, Han N, Lee JH (2020) Inflammatory signals induce AT2 cell-derived damage: associated transient progenitors that mediate alveolar regeneration. Cell Stem Cell 27(3):366-382.e367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conte E, Gili E, Fagone E, Fruciano M, Iemmolo M, Vancheri C (2014) Effect of pirfenidone on proliferation, TGF-β-induced myofibroblast differentiation and fibrogenic activity of primary human lung fibroblasts. Eur J Pharm Sci 58:13–19

    Article  CAS  PubMed  Google Scholar 

  • Coskun G, Sencar L, Tuli A, Saker D, Alparslan MM, Polat S (2019) Effects of osteocalcin on synthesis of testosterone and INSL3 during adult leydig cell differentiation. Int J Endocrinol 2019:1041760

    Article  PubMed  PubMed Central  Google Scholar 

  • Demirköse M, Erden E (2021) Ratlarda bleomisin ile oluşturulan deneysel akciğer fibrozisi modelinde erdostein ve N-asetilsistein’in fibrozis üzerine etkilerinin incelenmesi. J Med Palliat Care 2(4):136–142

    Article  Google Scholar 

  • Dostal Z, Modriansky M (2019) The effect of quercetin on microRNA expression: a critical review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 163(2):95–106

    Article  PubMed  Google Scholar 

  • El-Mohandes EM, Moustafa AM, Khalaf HA, Hassan YF (2017) The role of mast cells and macrophages in amiodarone induced pulmonary fibrosis and the possible attenuating role of atorvastatin. Biotech Histochem 92(7):467–480

    Article  CAS  PubMed  Google Scholar 

  • Gabbiani G (1992) The biology of the myofibroblast. Kidney Int 41(3):530–532

    Article  CAS  PubMed  Google Scholar 

  • Goto Y, Kojima S, Nishikawa R, Enokida H, Chiyomaru T, Kinoshita T, Nakagawa M, Naya Y, Ichikawa T, Seki N (2014) The microRNA-23b/27b/24 – 1 cluster is a disease progression marker and tumor suppressor in prostate cancer. Oncotarget 5(17):7748–7759

    Article  PubMed  PubMed Central  Google Scholar 

  • Graham JR, Williams CM, Yang Z (2014) MicroRNA-27b targets gremlin 1 to modulate fibrotic responses in pulmonary cells. J Cell Biochem 115(9):1539–1548

    Article  CAS  PubMed  Google Scholar 

  • Hay ED (1995) An overview of epithelio-mesenchymal transformation. Cells Tissues Organs 154(1):8–20

    Article  CAS  Google Scholar 

  • Hinz B, Phan SH, Thannickal VJ, Prunotto M, Desmoulière A, Varga J, De Wever O, Mareel M, Gabbiani G (2012) Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. Am J Pathol 180(4):1340–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hohmann MS, Habiel DM, Coelho AL, Verri WA Jr, Hogaboam CM (2019) Quercetin enhances ligand-induced apoptosis in senescent Idiopathic pulmonary fibrosis fibroblasts and reduces lung fibrosis in vivo. Am J Respir Cell Mol Biol 60(1):28–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imrédi E, Tóth B, Doma V, Barbai T, Rásó E, Kenessey I, Tímár J (2016) Aquaporin 1 protein expression is associated with BRAF V600 mutation and adverse prognosis in cutaneous Melanoma. Melanoma Res 26(3):254–260

    Article  PubMed  Google Scholar 

  • Kandere-Grzybowska K, Kempuraj D, Cao J, Cetrulo CL, Theoharides TC (2006) Regulation of IL-1-induced selective IL-6 release from human mast cells and inhibition by quercetin. Br J Pharmacol 148(2):208–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kyung SY, Kim DY, Yoon JY, Son ES, Kim YJ, Park JW, Jeong SH (2018) Sulforaphane attenuates pulmonary fibrosis by inhibiting the epithelial-mesenchymal transition. BMC Pharmacol Toxicol 19(1):13

    Article  PubMed  PubMed Central  Google Scholar 

  • Li C, Li Y, Lu Y, Niu Z, Zhao H, Peng Y, Li M (2021) miR-26 family and its target genes in tumorigenesis and development. Crit Rev Oncol Hematol 157:103124

    Article  PubMed  Google Scholar 

  • Li D, Zhang J, Liu Z, Gong Y, Zheng Z (2021) Human umbilical cord mesenchymal stem cell-derived exosomal miR-27b attenuates subretinal fibrosis via suppressing epithelial-mesenchymal transition by targeting HOXC6. Stem Cell Res Ther 12(1):24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Liu B, Zhang GQ, Zou JF, Zou ML, Cheng ZS (2018) Calpain inhibition attenuates bleomycin-induced pulmonary fibrosis via switching the development of epithelial-mesenchymal transition. Naunyn Schmiedebergs Arch Pharmacol 391(7):695–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majewski S, Piotrowski WJ (2021) Air pollution—an overlooked risk factor for idiopathic pulmonary fibrosis. J Clin Med 10(1):77

    Article  CAS  Google Scholar 

  • Miao C, Xiong Y, Zhang G, Chang J (2018) MicroRNAs in idiopathic pulmonary fibrosis, new research progress and their pathophysiological implication. Exp Lung Res 44(3):178–190

    Article  CAS  PubMed  Google Scholar 

  • O’Reilly S (2016) MicroRNAs in fibrosis: opportunities and challenges. Arthritis Res Therapy 18(1):11

    Article  Google Scholar 

  • Okada H, Ban S, Nagao S, Takahashi H, Suzuki H, Neilson EG (2000) Progressive renal fibrosis in murine polycystic kidney disease: an immunohistochemical observation. Kidney Int 58(2):587–597

    Article  CAS  PubMed  Google Scholar 

  • Pan J, Li X, Wang X, Yang L, Chen H, Su N, Wu C, Hao Y, Jin S, Li H (2021) MCTR1 intervention reverses experimental lung fibrosis in mice. J Inflamm Res 14:1873

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandit KV, Milosevic J (2015) MicroRNA regulatory networks in idiopathic pulmonary fibrosis. Biochem Cell Biol 93(2):129–137

    Article  CAS  PubMed  Google Scholar 

  • Richeldi L, Collard HR, Jones MG (2017) Idiopathic pulmonary fibrosis. Lancet 389(10082):1941–1952

    Article  PubMed  Google Scholar 

  • Şaker D, Sencar L, Yılmaz DM, Polat S (2019) Relationships between microRNA-20a and microRNA-125b expression and apoptosis and inflammation in experimental spinal cord injury. Neurol Res 41(11):991–1000

    Article  PubMed  Google Scholar 

  • Salton F, Volpe MC, Confalonieri M (2019) Epithelial–mesenchymal transition in the pathogenesis of idiopathic pulmonary fibrosis. Med (Kaunas) 55(4):83

    Google Scholar 

  • Sayed D, Abdellatif M (2011) MicroRNAs in development and disease. Physiol Rev 91(3):827–887

    Article  CAS  PubMed  Google Scholar 

  • Shimbori C, Upagupta C, Bellaye PS, Ayaub EA, Sato S, Yanagihara T, Zhou Q, Ognjanovic A, Ask K, Gauldie J, Forsythe P, Kolb MRJ (2019) Mechanical stress-induced mast cell degranulation activates TGF-β1 signalling pathway in pulmonary fibrosis. Thorax 74(5):455–465

    Article  PubMed  Google Scholar 

  • Sonoki H, Sato T, Endo S, Matsunaga T, Yamaguchi M, Yamazaki Y, Sugatani J, Ikari A (2015) Quercetin decreases Claudin-2 expression mediated by up-regulation of microRNA miR-16 in lung adenocarcinoma A549 cells. Nutrients 7(6):4578–4592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szczerba E, Zajkowska A, Bochowicz A, Pankiewicz K, Szewczyk G, Markiewicz K, Opolski G, Maciejewski T, Małecki M, Fijałkowska A (2018) Rise in antifibrotic and decrease in profibrotic microRNA protect the heart against fibrosis during pregnancy: a preliminary study. Adv Clin Exp Med 27(7):867–872

    Article  PubMed  Google Scholar 

  • Takano M, Deguchi J, Senoo S, Izumi M, Kawami M, Yumoto R (2020) Suppressive effect of quercetin against bleomycin-induced epithelial-mesenchymal transition in alveolar epithelial cells. Drug Metab Pharmacokinet 35(6):522–526

    Article  CAS  PubMed  Google Scholar 

  • Vaccaro CA, Brody JS, Snider GL (1985) Alveolar wall basement membranes in bleomycin-induced pulmonary fibrosis. Am Rev Respir Dis 132(4):905–912

    CAS  PubMed  Google Scholar 

  • Wang C, Pan Y, Zhang QY, Wang FM, Kong LD (2012) Quercetin and allopurinol ameliorate kidney injury in STZ-treated rats with regulation of renal NLRP3 inflammasome activation and lipid accumulation. PLoS ONE 7(6):e38285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willis BC, Borok Z (2007) TGF-beta-induced EMT: mechanisms and implications for fibrotic lung disease. Am J Physiol Lung Cell Mol Physiol 293(3):L525–L534

    Article  CAS  PubMed  Google Scholar 

  • Willis BC, Liebler JM, Luby-Phelps K, Nicholson AG, Crandall ED, du Bois RM, Borok Z (2005) Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-beta1: potential role in idiopathic pulmonary fibrosis. Am J Pathol 166(5):1321–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu L, Zhang Q, Mo W, Feng J, Li S, Li J, Liu T, Xu S, Wang W, Lu X, Yu Q, Chen K, Xia Y, Lu J, Xu L, Zhou Y, Fan X, Guo C (2017) Quercetin prevents hepatic fibrosis by inhibiting hepatic stellate cell activation and reducing autophagy via the TGF-β1/Smads and PI3K/Akt pathways. Sci Rep 7(1):9289

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiang S, Li J, Zhang Z (2020) miR-26b inhibits isoproterenol-induced cardiac fibrosis via the Keap1/Nrf2 signaling pathway. Exp Ther Med 19(3):2067–2074

    PubMed  PubMed Central  Google Scholar 

  • Yang L, Dong C, Yang J, Yang L, Chang N, Qi C, Li L (2019) MicroRNA-26b-5p inhibits mouse liver fibrogenesis and angiogenesis by targeting PDGF receptor-beta. Mol Ther Nucleic Acids 16:206–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng X, Huang C, Senavirathna L, Wang P, Liu L (2017) miR-27b inhibits fibroblast activation via targeting TGFβ signaling pathway. BMC Cell Biol 18(1):9

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Yu X, Fang X, Liang A, Yu Z, Gu P, Zeng Y, He J, Zhu H, Li S, Fan D, Han F, Zhang L, Yi X (2015) Preventive effects of vitamin D treatment on bleomycin-induced pulmonary fibrosis. Sci Rep 5:17638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Cai Y, Zhang W, Chen X (2018) Quercetin ameliorates pulmonary fibrosis by inhibiting SphK1/S1P signaling. Biochem Cell Biol 96(6):742–751

    Article  CAS  PubMed  Google Scholar 

  • Zhong Q, Zhou B, Ann DK, Minoo P, Liu Y, Banfalvi A, Krishnaveni MS, Dubourd M, Demaio L, Willis BC, Kim KJ, duBois RM, Crandall ED, Beers MF, Borok Z (2011) Role of endoplasmic reticulum stress in epithelial-mesenchymal transition of alveolar epithelial cells: effects of misfolded surfactant protein. Am J Respir Cell Mol Biol 45(3):498–509

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by a grant from Cukurova University Scientific Research Projects Coordination Unit (Project number: TTU-2020-12927).

Author information

Authors and Affiliations

Authors

Contributions

Ç.T. contributed to the study design, and was responsible for data acquisition, analysis and interpretation, and for writing of the manuscript. Y.K. was responsible for data acquisition, analysis and interpretation, and for writing of the manuscript. D.Ş., S.K. and B.G. were responsible for data acquisition and interpretation. U.Ö.M. was responsible for the study design, data acquisition, analysis and interpretation of the data, and for writing of the manuscript.

Corresponding author

Correspondence to Yurdun Kuyucu.

Ethics declarations

Competing interests

The authors declared no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toker, Ç., Kuyucu, Y., Şaker, D. et al. Investigation of miR-26b and miR-27b expressions and the effect of quercetin on fibrosis in experimental pulmonary fibrosis. J Mol Histol 55, 25–35 (2024). https://doi.org/10.1007/s10735-023-10168-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-023-10168-z

Keywords

Navigation