Skip to main content
Log in

Enhanced Study of Magnetic Properties of Polyvinyl Alcohol-Coated Superparamagnetic Iron Oxide Nanoparticles Below Blocking Temperatures

  • NANOSTRUCTURED MATERIALS
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Superparamagnetic iron oxide nanoparticles (SPIONs) coated with the synthetic hydrophilic biocompatible polymer polyvinyl alcohol were synthesized using the aqueous method. Static and dynamic magnetization processes were investigated for surface-modified SPIONs by analyzing the magnetization study at constant and varying magnetic fields. The magnetization on the applied magnetic field (M–H) and the magnetization dependent on temperature (M–T) were investigated. The temperature dependence of the complex susceptibility of SPIONs was investigated by measuring the in-phase (natural) and out-of-phase (imaginary) components of the susceptibility value at a frequency of 10 Hz and a very low magnetizing field. The XRD study shows diffraction peaks consistent with the magnetite (Fe3O4) phase of SPIONPs. FTIR, DSC, and TGA studies confirm the functional groups and stability of the coated nanoparticles. The magnetizing field cycle study at various constant temperatures (10, 100, and 300 K) shows the high magnetization value of polyvinyl alcohol-coated SPIONs with superparamagnetic states at and above 300 K. The effect of interparticle interaction on blocking temperature has been interpreted from FC/ZFC curves drawn at different DC magnetizing field values by varying temperature between 10 and 300 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

References

  1. A.K. Singh, O.N. Srivastava, and K. Singh, “Shape and Size-dependent magnetic properties of Fe3O4 nanoparticles synthesized using piperidine,” Nanoscale Res. Lett., 12, 298–305 (2017).

    Article  Google Scholar 

  2. C.P. Bean and U.D. Livingston, “Superparamagnetism,” J. Appl. Phys., 30, 120–129 (1959).

    Article  Google Scholar 

  3. B. Issa, I.M. Obaidat, B.A. Albiss, and Y. Haik, “Magnetic nanoparticles: Surface effects and properties related to biomedicine applications,” Int. J. Mol. Sci., 14, 21266‒21305 (2013).

    Article  CAS  Google Scholar 

  4. C. Jimenez-Jimenez, M. Manzano, and M. Vallet-Regi, “Nanoparticles coated with cell membranes for biomedical applications,” Biology, 9, Issue 11, 406 (2020); https://doi.org/10.3390/biology9110406.

  5. Q.A. Pankhurst, N. Thanh, S. Jones, and J. Dobson, “Progress in applications of magnetic nanoparticles in biomedicine,” J. Phys. D Appl. Phys., 42, 224001 (2009).

    Article  Google Scholar 

  6. A.G. Kolhatkar, A.C. Jamison, D. Litvinov, R.C. Willson, and T.R. Lee, “Tuning the magnetic properties of nanoparticles,” Int. J. Mol. Sci., 14, 15977–16009 (2013).

    Article  Google Scholar 

  7. M. Hasan, M.A. Hakim, M.A. Basith, M.S. Hossain, B. Ahmmad, M.A. Zubair, A. Hussain, and M.F. Islam, “Size dependent magnetic and electrical properties of Ba-doped nanocrystalline BiFeO3,” AIP Adv., 6, 035314 (2016).

    Article  Google Scholar 

  8. J. Wallyn, N. Anton, and T.F. Vandamme, “Synthesis, principles, and properties of magnetite nanoparticles for in vivo imaging applications. A review,” Pharmaceutics, 11, 601–630 (2019).

    Article  CAS  Google Scholar 

  9. G. Muscas, F. Congiu, G. Concas, C. Gannas, V. Mameli, N. Yaacoub, R.S. Hassan, D. Fiorani, S. Slimani, and D. Peddis, “The boundary between volume and surface driven magnetic properties in spinel iron oxide,” Nanoparticles Nanoscale Res. Lett., 17, 98 (2022).

    Article  CAS  Google Scholar 

  10. Y. Xiao and J. Du, “Superparamagnetic nanoparticles for biomedical applications,” J. Mater. Chem. B, 8, 354 (2020).

    Article  CAS  Google Scholar 

  11. M.J. Mitchell, M.M. Billingsley, R.M. Haley, M.E. Wechsler, N.A. Peppas, and R. Langer, “Engineering precision nanoparticles for drug delivery,” Nature Reviews Drug Discovery, 20, 101–124 (2021).

    Article  CAS  Google Scholar 

  12. J. Dulinska-Litewka, A. Lazarczyk, P. Halubie, O. Szafranski, K. Karnas, and N.N. Karewicz, “Superparamagnetic Iron oxide nanoparticles-current and prospective medical applications,” Materials, 12, 617 (2019).

    Article  CAS  Google Scholar 

  13. M. Suciu, C.M. Ionescu, A. Ciorita, S.C. Tripon, D. Nica, H. Al-Salami, and L. Barbu-Tuboran, “Applications of superparamagnetic iron oxide nanoparticles in drug and therapeutic delivery, and biotechnological advancements,” Beilstein J. Nanotechnol., 11, 1092–1109 (2020).

    Article  CAS  Google Scholar 

  14. A.V. Samrot, C.S. Sahithya, A.J. Selvarani, S.K. Purayil, and P. Ponnaiah, “A review on synthesis, characterization and potential biological applications of superparamagnetic iron oxide nanoparticles,” Current Research in Green and Sustainable Chemistry, 4, 100042 (2021).

    Article  CAS  Google Scholar 

  15. S. Arora and N.N. Wahajuddin, “Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers,” Int. J. Nanomed., 7, 3445–3471 (2012).

    Google Scholar 

  16. D. Ling, N. Lee, and T. Hyeon, “Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications,” Acc. Chem. Res., 48, 1276–1285 (2015).

    Article  CAS  Google Scholar 

  17. O.A.A. Aziz, K. Arafa, A.S.A. Dena, and I.M. El-Sherbiny, “Superparamagnetic Iron oxide nanoparticles (SPIONs): Preparation and recent applications,” J. Nanotech. Adv. Mat., 8, 21–29 (2020).

    Google Scholar 

  18. L. Maldonado-Camargo, M. Unni, C. Rinaldi, “Magnetic characterization of iron oxide nanoparticles for biomedical applications,” Methods Mol. Biol., 1570, 47–71 (2017).

    Article  CAS  Google Scholar 

  19. C. Pucci, A. Degl’Innocenti, M.K. Gumus, and G. Ciofani, “Superparamagnetic iron oxide nanoparticles for magnetic hyperthermia: recent advancements, molecular effects, and future directions in the omics era,” Biomater. Sci., 10, 2103–2121 (2022).

  20. S. Senapati, A.K. Mahanta, S. Kumar, and P. Maiti, “Controlled drug delivery vehicles for cancer treatment and their performance,” Sig. Transduct. Target. Ther., 3, 7 (2018).

    Article  Google Scholar 

  21. M. Mahmoudi, S. Sant, B. Wang, S. Laurent, and T. Sen, “Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy,” Adv. Drug Deliv. Rev., 63, 24–46 (2011).

    Article  CAS  Google Scholar 

  22. D. Chang, M. Lim, J.A.C.M. Goos, R. Qiao, Y.Y. Ng, F.M. Mansfeld, M. Jackson, T.P. Davis, and M. Kavallaris, “Bilogically tareted magnetic hyperthermia: Potential and limitations,” Front. Pharmacol., 9, 831 (2018).

    Article  Google Scholar 

  23. C. Janko, T. Ratschker, K. Nguyen, L. Zschiesche, R. Tietze, S. Lyer, C. Alexiou, “Functionalized superparamagnetic Iron Oxide nanoparticles (SPIONs) as platform for the targeted multimodal tumor therapy,” Front. Oncol., 9, 59 (2019).

    Article  Google Scholar 

  24. M. Wu, D. Zhang, Y. Zeng, L. Wu, X. Liu, and J. Liu, “Nanocluster of superparamagnetic iron oxide nanoparticles coated with poly (dopamine) for magnetic field-targeting, highly sensitive MRI and photothermal cancer therapy, Nanotechnology, 26, No. 11 (2015), https://doi.org/10.1088/0957-4484/26/11/115102.

  25. J. Asbby, S. Pan, and W. Zhong, “Size and surface functionalisation of iron oxide nanoparticles influence the composition and dynamic nature of their protein corona ACS,” Appl. Mater. Interfaces, 6, 15412–15419 (2014).

    Article  Google Scholar 

  26. M. Faraji, Y. Yamini, and M. Rezaee, “Magnetic nanoparticles: synthesis, stabilization, fictionalization, characterization and applications,” J. Iran Chem. Soc., 7, 1–37 (2010).

    Article  CAS  Google Scholar 

  27. A. Ali, H. Zafar, M. Zia, I. Haq, A.R. Phull, J.S. Ali, and A. Hussain, “Synthesis, characterization, application, and challenges of iron oxide nanoparticles,” Nanotechnol. Sci. Appl., 9, 49–67 (2016).

    Article  CAS  Google Scholar 

  28. Lucía Gutiérrez, Leonor de la Cueva, María Moros, Eva Mazarío, Sara de Bernardo, Jesús M. de la Fuente, M. Puerto Morales, and Gorka Salas, “Aggregation effects on the magnetic properties of iron oxide colloids,” Nanotechnology, 30, 112001 (2019).

  29. P.O. Champagne, H. Westwick, A. Bouthillier, and M. Sawan, “Colloidal stability of superparamagnetic iron oxide nanoparticles in the central nervous system: a review,” Nanomedicine, 13, 1385–1400 (2018).

    Article  CAS  Google Scholar 

  30. H. Shokrollahi, “Contrast agents for magnetic resonance imaging,” Mater. Sci. Eng. C, 33, 4485–4497 (2013).

    Article  CAS  Google Scholar 

  31. F. Mohammad, G. Balaji, A. Weber, R.M. Uppu, and C.S. Kumar, “Influence of gold nanoshell on hyperthermia of superparamagnetic iron oxide nanoparticles,” J. Phys. Chem. C, 114, 19194–19201 (2010).

    Article  CAS  Google Scholar 

  32. H. Maleki, A. Simchi, M. Imani, and B.F.O. Costa, “Size-controlled synthesis of superparamagnetic iron oxide nanoparticles and their surface coating by gold for biomedical applications,” J. Magn. Magn. Mater., 324, 3997–4005 (2012).

    Article  CAS  Google Scholar 

  33. S. Siddique and J.C.L. Chow, “Recent advances in functionalized nanoparticles in cancer theranostics,” Nanomaterials, 12, 2826 (2022).

    Article  CAS  Google Scholar 

  34. K.L. Pisane, E.C. Despeaux, and M.S. Seehra, “Magnetic relaxation and correlating effective magnetic moment with particle size distribution in maghemite nanoparticles,” J. Magn. Magn. Mater., 384, 148–154 (2015).

    Article  CAS  Google Scholar 

  35. A. Lak, S. Disch, and P. Bender, “Embracing defects and disorder in magnetic nanoparticles,” Adv. Sci. (Weinh), 8, Article 2002682 (2021).

  36. M.E. Sadat, S.L. Bud’ko, R.C. Ewing, H. Xu, G.M. Pauletti, D.B. Mast, and D. Shi, “Effect of dipole interactions on blocking temperature and relaxation dynamics of superparamagnetic iron-oxide (Fe3O4) nanoparticle systems,” Materials (Basel), 16, 496 (2023).

  37. C.B. Luis, S.C. Murcus, S.C. Anderson, Z. Nicholas, H.S. Marcelo, M. Ronei, I. Robert, and F.B. Andris, “Effect of magnetic dipolar interactions on nanoparticle heating efficiency: Implications for cancer hyperthermia,” Sci. Reports, 3, 1–11 (2013).

    Google Scholar 

  38. R. Yanes, O.C. Fesenko, H. Kachkachi, D.A. Garanin, R. Evans, and R.W. Chantrell, “Effective anisotropies and energy barriers of magnetic nanoparticles with Neel’s surface anisotropy,” Phys. Rev. B, 76, 064416 (2007).

    Article  Google Scholar 

  39. H. Shim, P. Dutta, M.S. Seehra, and J. Bonevich, “Size dependence of the blocking temperatures and electron magnetic resonance spectra in NiO nanoparticles, Sol. St. Commun., 145, 192–196 (2008).

    Article  CAS  Google Scholar 

  40. H. Mamiya, H. Fukumoto, J.L.C. Huaman, K. Suzuki, H. Miyamura, and J. Balachandran, “Estimation of magnetic anisotropy of individual magnetite nanoparticles for magnetic hyperthermia,” ACS Nano, 14, No. 7, 8421–8432 (2020).

    Article  CAS  Google Scholar 

  41. R. Kurchania, S.S. Sawant, and R.J. Ball, “Synthesis and characterization of magnetite/polyvinyl alcohol ore shell composite nanoparticles,” J. Am. Ceram. Soc., 97, 3208–3215 (2014).

    Article  CAS  Google Scholar 

  42. A. Maleki, M. Niksefat, J. Rahimi, Z. Hajizadeh, “Design and preparation of Fe3O4@PVA polymeric polymeric magnetic nanocomposite film and surface coating by sulfonic acid via in situ methods and evaluation of its catalytic performance in the synthesis of dihydropyrimidines,” BMC Chemistry, 13, No. 19 (2019).

  43. W.C. Nunes, L.M. Socolovsky, J.C. Denardin, F. Cebollada, A.I. Brandl, and M. Knobel, “Role of magnetic interparticle coupling on the field dependence of the superparamagnetic relaxation time,” Phys. Rev. B, 72, 212413 (2005).

    Article  Google Scholar 

  44. E. Kneller, M. Wolff, and E. Egger, “Magnetization curve of superparamagnetic alloys,” J. Appl. Phys., 37, 1838 (1966).

    Article  CAS  Google Scholar 

  45. E.C. Stoner and E.P. Wohlfarth, “A mechanism of magnetic hysteresis in heterogeneous alloys,” Philos. Trans. R. Soc. London A, 204, 599 (1948).

    Google Scholar 

  46. W.C. Nunes, F. Cebollada, and M. Knobel, “Effects of dipolar interactions on the magnetic properties of γ- Fe2O3 nanoparticles in the blocked state,” J. Appl. Phys., 99, 08N705 (2006).

    Article  Google Scholar 

  47. F. Fabris, Kun-Hua Tu, C.A. Ross, W.C. Nunes, “Influence of dipolar interactions on the magnetic properties of superparamagnetic particle systems,” J. Appl. Phys., 126, 173905 (2019).

  48. J.L. Dormann, D. Fiorani, and E. Tronc, “Magnetic relaxation in small particles systems,” Adv. Chem. Phys., 98, 283 (1997).

    CAS  Google Scholar 

  49. J.L. Dormann, L. Bessais, and D. Fiorani, “A dynamic study of small interacting particles: superparamagnetic model and spin glass laws,” J. Phys. C: Sol. St. Phys., 21, 2015–2034 (1988).

    Article  Google Scholar 

  50. V. Singh, M.S. Seehra, and J. Bonevich, “AC susceptibility studies of magnetic relaxation in nanoparticles of Ni dispersed in silica,” J. Appl. Phys., 105, 07B518 (2009).

    Article  Google Scholar 

  51. K.L. Pisane, E.C. Despeaux, and M.S. Seehra, “Magnetic relaxation and correlating effective magnetic moment with particle size distribution in maghemite nanoparticles,” J. Magn. Magn. Mater., 384, 148–154 (2015).

    Article  CAS  Google Scholar 

  52. J. Safari, S.F. Masouleh, Z. Zarnegar, and A.E. Najafabadi, “Water-dispersible Fe3O4 nanoparticles stabilized with a biodegradable amphiphilic copolymer,” Comptes Rendus Chimie, 17, 151–155 (2014).

    Article  CAS  Google Scholar 

  53. J.B. Mamani, A.J. Costa-Filho, D.R. Cornejo, E.D. Vieira, and L.F. Gamarra, “Synthesis and characteriation of magnetite nanoparticles coated with lauric acid,” Mater. Character., 81, 28–36 (2013).

    Article  CAS  Google Scholar 

  54. H. Rashid, M.A. Mansoor, B. Haider, R. Nasir, S.B.A. Hamid, and A. Abdulrahman, “Synthesis and characterization of magnetite nano particles with high selectivity using in-situ precipitation method,” Separ. Sci. Technol., 55, 1207–1215 (2020).

    Article  CAS  Google Scholar 

  55. K. Petcharoen and A. Sirivat, “Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method,” Mater. Sci. Eng. B, 177, 421–427 (2012).

    Article  CAS  Google Scholar 

  56. T. Ali and A. Venkataraman, “Synthesis and characterization of polyvinyl alcohol (PVA) coated functionalized γ-Fe2O3 nanoparticles,” Int. J. Adv. Eng. Technol., 7, 416–420 (2014).

    Google Scholar 

  57. M.S.A. Darwish, L.M. Al-Harbi, and A. Bakry, “Synthesis of magnetite nanoparticles coated with polyvinyl alcohol for hyperthermia application,” J. Therm. Anal. Calorim., 147, 11921–11930 (2022).

    Article  CAS  Google Scholar 

  58. B. Gogoi and U. Das Structural, “Thermal, and magnetic characterization analysis of synthesized Fe3O4- spinel ferrite nanoparticles,” Adv. Mater. Res., 1176, 79 (2023).

  59. R. Kurchania, S.S. Sawant, and R.J. Ball, “Synthesis and characterization of magnetite/ polyvinyl alcohol; core shell composite nanoparticles,” J. Am. Ceram. Soc., 97, 3208–3215 (2014).

    Article  CAS  Google Scholar 

  60. A. Mohammadi and M. Barikani, “Synthesis and characterization of superparamagnetic Fe3O4 nanoparticles coated with thiodiglycol,” Mater. Character., 90, 88–93 (2014).

    Article  CAS  Google Scholar 

  61. M.I. Khalil, “Co-precipitation in aqueous solution synthesis of magnetite nanoparticles using iron (III) salts as precursors,” Arabian J. Chem., 8, 279–284 (2015).

    Article  CAS  Google Scholar 

  62. S. Ahmadi, C.H. Chia, S. Zakaria, K. Saeedfar, and N. Asim, “Synthesis of Fe3O4 nanocrystals using hydrothermal approach,” J. Magn. Magn. Mater., 324, 4147–4150 (2012).

    Article  CAS  Google Scholar 

  63. J.B. Mamani, A.J. Costa-Filho, D.R. Cornejo, E.D. Vieira, and L.F. Gamarra, “Synthesis and characterization of magnetite nanoparticles coated with lauric acid,” Mater. Character., 81, 28–36 (2013).

    Article  CAS  Google Scholar 

  64. G. Hadjipanayis, D.J. Sellmyer, and B. Brandt, “Rare-earth-rich metallic glasses. I. Magnetic hysteresis,” Phys. Rev. B, 23, 3349 (1981).

    Article  CAS  Google Scholar 

  65. G. Schinteie, P. Palade, L. Vekas, N. Iacob, C. Bartha, and V. Kuncser, “Volume fraction dependent magnetic behavior of ferrofluids for rotating seal applications,” J. Phys. D: Appl. Phys., 46, 395501 (2013).

    Article  Google Scholar 

  66. Y.D. Zhang, J.I. Budnick, W.A. Hines, C.-L. Chien, and J.Q. Xiao, “Effect of magnetic field on the superparamagnetic relaxation in granular Co–Ag samples,” Appl. Phys. Lett., 72, 2053 (1998).

    Article  CAS  Google Scholar 

  67. M.S. Seehra, V. Singh, P. Dutta, S. Neeleshwar, Y.Y. Chen, C.L. Chen, S.W. Chou, and C.C. Chen, “Sizedependent magnetic parameters of fcc FePt nanoparticles: applications to magnetic hyperthermia,” J. Phys. D. Appl. Phys., 43, 145002 (2010).

    Article  Google Scholar 

  68. J.L. Dormann, N. Viart, J.L. Rehspringer, A. Ezzir, and D. Niznansky, “Magnetic properties of Fe2O3 hyperfine interactions,” Hyperfine Interactions, 112, 89–92 (1998).

    Article  CAS  Google Scholar 

  69. C. Vazque-Vazquez, M.A. Lopez-Quintela, M.C. Bujan-Nunez, and J. Rivas, “Finite size and surface effects on the magnetic properties of cobalt ferrite nanoparticles,” J. Nanoparticle Res., 13, 1663–1676 (2011).

    Article  Google Scholar 

  70. A. Zelenakova, J. Kovac, and V. Zelenak, “Magnetic properties of Fe2O3 nanoparticles embedded in hollows of periodic nanoporous silica,” J. Appl. Phys., 108, Article 034323 (2010).

  71. J.L. Dormann, D. Fiorani, R. Cherkaoui, E. Tronc, F. Lucari, F. D’Orazio, L. Spinu, M. Nogues, H. Kachkachi, and J.P. Jolivet, “From pure superparamagnetism to glass collective state in γ-Fe2O3 nanoparticle assemblies,” J. Magn. Magn. Mater.,. 203, 23–27 (1999).

    Article  CAS  Google Scholar 

  72. L. Lundgren, P. Svedlindh, and O. Beckman, “Measurement of complex susceptibility on a metallic spin glass with broad relaxation spectrum,” J. Magn. Magn. Mater., 25, 33–38 (1981).

    Article  CAS  Google Scholar 

  73. R.D. Zysler, C.A. Ramos, E.D. Biasi, H. Romero, A. Ortega, and D. Fiorani, “Effect of interparticle interactions in (Fe0.26Ni0.74)50B50 magnetic nanoparticles,” J. Magn. Magn. Mater., 221, 37–44 (2000).

    Article  CAS  Google Scholar 

  74. J.L. Dormann, D. Fiorani, and E. Tronc, “On the models for interparticle interactions in nanoparticle assemblies: comparison with experimental results,” J. Magn. Magn. Mater., 202, 251–267 (1999).

    Article  CAS  Google Scholar 

  75. J. Garcia-Otero, M. Porto, J. Rivas, and A. Bunde, “Influence of dipolar interaction on magnetic properties of ultrafine ferromagnetic particles,” Phys. Rev. Lett., 84, 167–170 (2000).

    Article  CAS  Google Scholar 

  76. M. Bahiana, J.P.P. Nunes, D. Attbir, P. Vargas, and M. Knobel, “Ordering effects of the dipolar interaction in lattices of small magnetic particles,” J. Magn. Magn. Mater., 281, 372–377 (2004).

    Article  CAS  Google Scholar 

  77. W.C. Nunes, L.M. Sokolovsky, J.C. Denardin, F. Cebollada, A.L. Brandl, and M. Knobel, “Role of magnetic interparticle coupling on the field dependence of the superparamagnetic relaxation time,” Phys. Rev. B, 72, 212413 (2005).

    Article  Google Scholar 

  78. P. Allia, M. Coisson, M. Knobel, P. Tiberto, and F. Vinai, “Magnetic hysteresis based on dipolar interactions in granular magnetic systems,” Phys. Rev. B, 60, 12207 (1999).

    Article  CAS  Google Scholar 

  79. O. Iglesias and A. Labarta, “Magnetic relaxation in terms of microscopic energy barriers in a model of dipolar interacting nanoparticles,” Phys. Rev. B, 70, 144401 (2004).

    Article  Google Scholar 

  80. E. Lima, J.M. Vargas, H.R. Rechenberg, and R.D. Zysler, “Interparticle interaction effects on the magnetic order in surface of Fe3O4 nanoparticles,” J. Nanoscience Nanotechnol., 8, 5913–5920 (2008), https://doi.org/10.1166/jnn.2008.244.

    Article  CAS  Google Scholar 

  81. D. Kechrakos and K.N. Trohidou, “Magnetic properties of dipolar interacting single-domain particles,” Phys. Rev. B, 58, 12169 (1998), https://doi.org/10.1103/PhysRevB.58.12169.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bandana Gogoi.

Additional information

Published in Poroshkova Metallurgiya, Vol. 62, Nos. 1–2 (549), pp. 52–70, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gogoi, B., Das, U. Enhanced Study of Magnetic Properties of Polyvinyl Alcohol-Coated Superparamagnetic Iron Oxide Nanoparticles Below Blocking Temperatures. Powder Metall Met Ceram 62, 41–57 (2023). https://doi.org/10.1007/s11106-023-00368-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-023-00368-3

Keywords

Navigation