Skip to main content

Advertisement

Log in

Drosophila olfaction as a model system for studying human neurological disorders

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

The fruit fly, Drosophila melanogaster, has been one of the finest systems for decoding myriad puzzles across different domains of biology. Beyond addressing the fundamental problems, it has been used as a fantastic model organism for human disease research. Being an insect, Drosophila has a robust and advanced olfactory system that has been used many times as a model neuronal circuit to study fundamental questions in neurobiology. The circuit is well-explored at anatomical, physiological, and functional levels. It provides several advantages for the study of neurobiological disorders, such as spatiotemporally regulated misexpression or knockdown of disease proteins, genetic tractability, well-studied neuroanatomy, simple behavioural training paradigms, and quantifiable assays. Hence, Drosophila olfaction has been a favourite choice for the study of several neurodegenerative and neurodevelopmental disorders including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, fragile X syndrome, etc. This review aims to discuss earlier progress and future scope in using the Drosophila olfactory system for modelling human neurological pathophysiology for conducting fundamental and applied research. A major goal of research in biological science is to alleviate human disease burden. Diverse experimental systems are required to address different aspects of disease aetiology. Drosophila is one of the finest in vivo systems; its olfactory system is arguably the most well-characterized circuit for modelling human neurological disorders. A vast amount of research has been conducted to decipher cellular, molecular, and even cognitive aspects of human disorders using the Drosophila olfactory system. This review aims at summarizing such research progress to date and critically analysing the suitability of this system for modelling more complex neurological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Ali YO, Ruan K and Zhai RG 2012 NMNAT suppresses Tau-induced neurodegeneration by promoting clearance of hyperphosphorylated Tau oligomers in a Drosophila model of tauopathy. Hum. Mol. Genet. 21 237

    Article  CAS  PubMed  Google Scholar 

  • Andlauer TFM, Scholz-kornehl S, Tian R, et al. 2014 Drep-2 is a novel synaptic protein important for learning and memory. eLife 4 e03895

    Article  Google Scholar 

  • Avila J, Lucas JJ, Pérez M, et al. 2004 Role of tau protein in both physiological and pathological conditions. Physiol. Rev. 84 361–384

    Article  CAS  PubMed  Google Scholar 

  • Bates AS, Schlegel P, Roberts RJV, et al. 2020 Complete Connectomic reconstruction of olfactory projection neurons in the fly brain. Curr. Biol. 30 3183–3199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beharry C, Alaniz ME and Alonso C 2013 Expression of Alzheimer-like pathological human Tau induces a behavioral motor and olfactory learning deficit in Drosophila melanogaster. J. Alzheimer’s Dis. 37 539–550

    Article  Google Scholar 

  • Bellosta P and Soldano A 2019 Dissecting the genetics of autism spectrum disorders: A Drosophila perspective. Front. Physiol. 10 987

    Article  PubMed  PubMed Central  Google Scholar 

  • Berdnik D, Chihara T, Couto A, et al. 2006 Wiring stability of the adult Drosophila olfactory circuit after lesion. J. Neurosci. 26 3367–3376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharya MRC, Gerdts J, Naylor SA, et al. 2012 A model of toxic neuropathy in Drosophila reveals a role for MORN4 in promoting axonal degeneration. J. Neurosci. 32 5054–5061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolduc FV, Bell K, Cox H, et al. 2008 Excess protein synthesis in Drosophila Fragile X mutants impairs long-term memory. Nat. Neurosci. 11 1143–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brand AH and Perrimon N 1993 Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118 401–415

    Article  CAS  PubMed  Google Scholar 

  • Burnouf S, Grönke S, Augustin H, et al. 2016 Deletion of endogenous Tau proteins is not detrimental in Drosophila. Sci. Rep. 6 23102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chai A, Withers J, Koh YH, et al. 2008 hVAPB, the causative gene of a heterogeneous group of motor neuron diseases in humans, is functionally interchangeable with its Drosophila homologue DVAP-33A at the neuromuscular junction. Hum. Mol. Genet. 17 266–280

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty R, Vepuri V, Mhatre Siddhita D, et al. 2011 Characterization of a Drosophila Alzheimer’s disease model: Pharmacological rescue of cognitive defects. PLoS One 6 e20799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang S, Bray SM, Li Z, et al. 2008 Identification of small molecules rescuing fragile X syndrome phenotypes in Drosophila. Nat. Chem. Biol. 4 256–263

    Article  CAS  PubMed  Google Scholar 

  • Chen AY, Xia S, Wilburn P, et al. 2014 Olfactory deficits in an alpha-synuclein fly model of Parkinson’s disease. PLoS One 9 e97758

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen K, Luan X, Liu Q, et al. 2019 Drosophila histone demethylase KDM5 regulates social behavior through immune control and gut microbiota maintenance. Cell Host Microbe 25 537–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang H, Wang L, Xie Z, et al. 2010 PI3 kinase signaling is involved in Aβ-induced memory loss in Drosophila. Proc. Natl. Acad. Sci. USA 107 3–8

    Article  Google Scholar 

  • Choi L and An JY 2021 Genetic architecture of autism spectrum disorder: Lessons from large-scale genomic studies. Neurosci. Biobehav. Rev. 128 244–257

    Article  CAS  PubMed  Google Scholar 

  • Choi CH, Schoenfeld BP, Weisz ED, et al. 2015 PDE-4 inhibition rescues aberrant synaptic plasticity in Drosophila and mouse models of fragile X syndrome. J. Neurosci. 35 396–408

    Article  PubMed  PubMed Central  Google Scholar 

  • Chou YH, Spletter ML, Yaksi E, et al. 2010 Diversity and wiring variability of olfactory local interneurons in the Drosophila antennal lobe. Nat. Neurosci. 13 439–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark DA, Kohler D, Mathis A, et al. 2018 Tracking Drosophila larval behavior in response to optogenetic stimulation of olfactory neurons. J. Vis. Exp. 2018 57353

    Google Scholar 

  • Coll-Tane M, Krebbers A, Castells-Nobau A, et al. 2019 Intellectual disability and autism spectrum disorders: Insights from Drosophila. Dis. Model. Mech. 12 dmm039180

  • Das S, Sadanandappa MK, Dervan A, et al. 2011 Plasticity of local GABAergic interneurons drives olfactory habituation. Proc. Natl. Acad. Sci. USA 108 2–10

    Article  Google Scholar 

  • De Rose F, Corda V, Solari P, et al. 2016 Drosophila mutant model of Parkinson’s disease revealed an unexpected olfactory performance: morphofunctional evidences. Parkinsons Dis. 2016 3508073

    PubMed  PubMed Central  Google Scholar 

  • Dissel S, Klose M, Cao L, et al. 2017 Neurobiology of sleep and circadian rhythms enhanced sleep reverses memory deficits and underlying pathology in Drosophila models of Alzheimer’s disease. Neurobiol. Sleep Circadian Rhythm. 2 15–26

    Article  Google Scholar 

  • Drozd M, Bardoni B and Capovilla M 2018 Modeling fragile X syndrome in Drosophila. Front. Mol. Neurosci. 11 124

    Article  PubMed  PubMed Central  Google Scholar 

  • Faghihi MA, Mottagui-Tabar S and Wahlestedt C 2004 Genetics of neurological disorders. Expert Rev. Mol. Diagn. 4 317–332

    Article  CAS  PubMed  Google Scholar 

  • Feany MB and Bender WW 2000 A Drosophila model of Parkinson’s disease. Nature 404 394–398

    Article  CAS  PubMed  Google Scholar 

  • Fenckova M, Blok LER, Asztalos L, et al. 2019 Habituation learning is a widely affected mechanism in Drosophila models of intellectual disability and autism spectrum disorders. Biol. Psychiatry 86 294–305

    Article  PubMed  PubMed Central  Google Scholar 

  • Fleischer J, Schwarzenbacher K, Besser S, et al. 2006 Olfactory receptors and signalling elements in the Grueneberg ganglion. J. Neurochem. 98 543–554

    Article  CAS  PubMed  Google Scholar 

  • Franco LM, Okray Z, Linneweber GA, et al. 2017 Computations and behaviors in a Drosophila model of fragile X syndrome reduced lateral inhibition impairs olfactory computations and behaviors in a Drosophila model of fragile X syndrome. Curr. Biol. 27 1111–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frank A, Matiolli CC, Viana AJC, et al. 2018 Circadian entrainment in Arabidopsis by the sugar-responsive transcription factor bZIP63. Curr. Biol. 28 2597–2606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franks KM and Isaacson JS 2006 Strong single-fiber sensory inputs to olfactory cortex: implications for olfactory coding. Neuron 49 357–363

    Article  CAS  PubMed  Google Scholar 

  • Gistelinck M, Lambert J, Callaerts P, et al. 2012 Drosophila models of tauopathies: what have we learned? Int. J. Alzheimer’s Dis. 2012 970980

    PubMed  PubMed Central  Google Scholar 

  • Glanzman DL 2011 Olfactory habituation: Fresh insights from flies. Proc. Natl. Acad. Sci. USA 108 14711–14712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golovin RM, Vest J, Vita DJ, et al. 2019 Activity-dependent remodeling of Drosophila olfactory sensory neuron brain innervation during an early-life critical period activity-dependent remodeling of Drosophila olfactory sensory neuron brain innervation during an early-life critical period. J. Neurosci. 37 2995–3012

    Article  Google Scholar 

  • Guerra LGGC and Silva MTA 2010 Learning processes and the neural analysis of conditioning. Psychol. Neurosci. 3 195–208

    Article  Google Scholar 

  • Higham JP, Malik BR, Buhl E, et al. 2019 Alzheimer’s disease associated genes Ankyrin and Tau cause shortened lifespan and memory loss in Drosophila. Front. Cell. Neurosci. 13 260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong W and Luo L 2014 Genetic control of wiring specificity in the fly olfactory system. Genetics 196 17–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoopfer ED, McLaughlin T, Watts RJ, et al. 2006 Wlds protection distinguishes axon degeneration following injury from naturally occurring developmental pruning. Neuron 50 883–895

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Flockhart I, Vinayagam A, et al. 2011 An integrative approach to ortholog prediction for disease-focused and other functional studies. BMC Bioinform. 12 357

  • Hummel T and Rodrigues V 2008 Development of the Drosophila olfactory system; in Advances in experimental medicine and biology (Ed.) Technau GM (New York, NY: Springer) pp 82–101

    Google Scholar 

  • Iijima K, Liu HP, Chiang AS, et al. 2004 Dissecting the pathological effects of human Aβ40 and Aβ42 in Drosophila: A potential model for Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 101 6623–6628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iossifov I, O’Roak BJ, Sanders SJ, et al. 2014 The contribution of de novo coding mutations to autism spectrum disorder. Nature 515 216–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang H, Zhao J, Jiang X, et al. 2019 Drosophila Netrin-B controls mushroom body axon extension and regulates courtship-associated learning and memory of a Drosophila fragile X syndrome model. Mol. Brain 12 52

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaur K, Simon AF, Chauhan V, et al. 2015 Effect of bisphenol A on Drosophila melanogaster behavior – A new model for the studies on neurodevelopmental disorders. Behav. Brain Res. 284 77–84

    Article  CAS  PubMed  Google Scholar 

  • Knecht ZA, Silbering AF, Cruz J, et al. 2017 Ionotropic receptor-dependent moist and dry cells control hygrosensation in Drosophila. eLife 6 e26654

    Article  PubMed  PubMed Central  Google Scholar 

  • Knight D, Iliadi K, Charlton MP, et al. 2007 Presynaptic plasticity and associative learning are impaired in a Drosophila presenilin null mutant. Dev. Neurobiol. 67 1598–1613

    Article  PubMed  Google Scholar 

  • Komarov N and Sprecher SG 2022 The chemosensory system of the Drosophila larva: an overview of current understanding. Fly 16 1–12

  • Kravitz EA and Fernandez MP 2015 Aggression in Drosophila. Behav. Neurosci. 129 549–563

    Article  PubMed  Google Scholar 

  • Kudow N, Kamikouchi A and Tanimura T 2019 Softness sensing and learning in Drosophila larvae. J. Exp. Biol. 222 jeb196329

    Article  PubMed  Google Scholar 

  • Lai SL and Lee T 2006 Genetic mosaic with dual binary transcriptional systems in Drosophila. Nat. Neurosci. 9 703–709

    Article  CAS  PubMed  Google Scholar 

  • Laska M and Shepherd GM 2007 Olfactory discrimination ability of CD-1 mice for a large array of enantiomers. Neuroscience 144 295–301

    Article  CAS  PubMed  Google Scholar 

  • Lebestky T, Chang J-SC, Dankert H, et al. 2009 Two different forms of arousal in Drosophila are oppositely regulated by the dopamine D1 receptor ortholog DopR via distinct neural circuits. Neuron 64 522–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lesar A, Tahir J, Wolk J, et al. 2021 Switch-like and persistent memory formation in individual Drosophila larvae. eLife 10 e70317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, MacKenzie KR, Putluri N, et al. 2017 The glia-neuron lactate shuttle and elevated ROS promote lipid synthesis in neurons and lipid droplet accumulation in glia via APOE/D. Cell Metab. 26 719–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo L, Tully T and White K 1992 Human amyloid precursor protein ameliorates behavioral deficit of flies deleted for appl gene. Neuron 9 595–605

    Article  CAS  PubMed  Google Scholar 

  • MacDonald JM, Beach MG, Porpiglia E, et al. 2006 The Drosophila cell corpse engulfment receptor draper mediates glial clearance of severed axons. Neuron 50 869–881

    Article  CAS  PubMed  Google Scholar 

  • Maresh A, Gil DR, Whitman MC, et al. 2008 Principles of glomerular organization in the human olfactory bulb – implications for odor processing. PLoS One 3 e2640

    Article  PubMed  PubMed Central  Google Scholar 

  • Marin EC, Büld L, Theiss M, et al. 2020 Connectomics analysis reveals first-, second-, and third-order thermosensory and hygrosensory neurons in the adult Drosophila brain. Curr. Biol. 30 3167–3182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin-Peña A, Rincon-limas DE and Fernandez-funez P 2017 Anti-Aβ single-chain variable fragment antibodies restore memory acquisition in a Drosophila model of Alzheimer’s disease. Sci. Rep. 7 11268

    Article  PubMed  PubMed Central  Google Scholar 

  • Martín-Peña A, Rincón-limas DE and Fernandez-fúnez P 2018 Engineered Hsp70 chaperones prevent Aβ42-induced memory impairments in a Drosophila model of Alzheimer’s disease. Sci. Rep. 8 9915

    Article  PubMed  PubMed Central  Google Scholar 

  • Mcguire SE, Deshazer M and Davis RL 2005 Thirty years of olfactory learning and memory research in Drosophila melanogaster. Prog. Neurobiol. 76 328–347

    Article  CAS  PubMed  Google Scholar 

  • McGuire SE, Mao Z and Davis RL 2004 Spatiotemporal gene expression targeting with the TARGET and gene-switch systems in Drosophila. Sci. STKE 2004 pl6

  • Meloni I, Sachidanandan D, Thum AS, et al. 2020 Controlling the behaviour of Drosophila melanogaster via smartphone optogenetics. Sci. Rep. 10 17614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mershin A, Pavlopoulos E, Fitch O, et al. 1979 Learning and memory deficits upon TAU accumulation in Drosophila mushroom body neurons. Learn. Mem. 11 277–287

    Article  Google Scholar 

  • Miller BR, Press C, Daniels RW, et al. 2009 A DLK-dependent axon self-destruction program promotes Wallerian degeneration. Nat. Neurosci. 12 387–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molina-Mateo D, Fuenzalida-Uribe N, Hidalgo S, et al. 2017 Characterization of a presymptomatic stage in a Drosophila Parkinson’s disease model: Unveiling dopaminergic compensatory mechanisms. Biochim. Biophys. Acta Mol. Basis Dis. 1863 2882–2890

    Article  CAS  PubMed  Google Scholar 

  • Monyak RE, Emerson D, Schoenfeld BP, et al. 2017 Insulin signaling misregulation underlies circadian and cognitive de fi cits in a Drosophila fragile X model. Mol. Psychiatry 22 1140–1148

    Article  CAS  PubMed  Google Scholar 

  • Müller U and Graeber MB 1996 Neurogenetic diseases: Molecular diagnosis and therapeutic approaches. J. Mol. Med. 74 71–84

    Article  PubMed  Google Scholar 

  • Mummery-Widmer JL, Yamazaki M, et al. 2009 Genome-wide analysis of Notch signalling in Drosophila by transgenic RNAi. Nature 458 987–992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagoshi E 2018 Drosophila models of sporadic Parkinson’s disease. Int. J. Mol. Sci. 19 3343

    Article  PubMed  PubMed Central  Google Scholar 

  • Neely GG, Hess A, Costigan M, et al. 2010 A genome-wide Drosophila screen for heat nociception identifies α2δ3 as an evolutionarily conserved pain gene. Cell 143 628–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nitta Y and Sugie A 2022 Studies of neurodegenerative diseases using Drosophila and the development of novel approaches for their analysis. Fly 16 275–298

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Roak BJ, Stessman HA, Boyle EA, et al. 2014 Recurrent de novo mutations implicate novel genes underlying simplex autism risk. Nat. Commun. 5 5595

    Article  PubMed  Google Scholar 

  • Osterloh JM, Yang J, Rooney TM, Fox AN, Adalbert R, Powell EH, Sheehan AE, Avery MA, et al. 2012 dSarm/Sarm1 is required for activation of an injury-induced axon death pathway. Science 337 481–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey UB and Nichols CD 2011 Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol. Rev. 63 411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pham HM, Xu A, Schriner SE, et al. 2018 Cinnamaldehyde improves lifespan and healthspan in Drosophila melanogaster models for Alzheimer’s disease. Biomed Res. Int. 2018 3570830

    Article  PubMed  PubMed Central  Google Scholar 

  • Poddighe S, Bhat KM, Setzu MD, et al. 2013 Impaired sense of smell in a Drosophila Parkinson’s model. PLoS One 8 e73156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poddighe S, De Rose F, Marotta R, et al. 2014 Mucuna pruriens (velvet bean) rescues motor, olfactory, mitochondrial and synaptic impairment in PINK1 B9 Drosophila melanogaster genetic model of Parkinson’s disease. PLoS One 9 e110802

    Article  PubMed  PubMed Central  Google Scholar 

  • Poo C and Isaacson JS 2009 Odor representations in olfactory cortex:coding, global inhibition, and oscillations. Neuron 62 850–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quinn WG, Harris WA and Benzer S 1974 Conditioned behavior in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 71 708–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ran D, Xie B, Gan Z, et al. 2018 Melatonin attenuates hLRRK2-induced long-term memory deficit in a Drosophila model of Parkinson’s disease. Biomed. Rep. 9 221–226

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reiter LT, Potocki L, Chien S, et al. 2001 A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res. 11 1114–1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez V, Didiano D and Desplan C 2012 Power tools for gene expression and clonal analysis in Drosophila. Nat. Methods 9 47–55

    Article  Google Scholar 

  • Rylaarsdam L and Guemez-Gamboa A 2019 Genetic causes and modifiers of autism spectrum disorder. Front. Cell. Neurosci. 13 385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salim S, Banu A, Alwa A, et al. 2021 The gut-microbiota-brain axis in autism: what Drosophila models can offer? J. Neurodev. Disord. 13 37

    Article  PubMed  PubMed Central  Google Scholar 

  • Satterstrom FK, Kosmicki JA, Wang J, et al. 2020 Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell 180 568–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scherer S, Stocker RF and Gerber B 2003 Olfactory learning in individually assayed Drosophila larvae. Learn. Mem. 10 217

    Article  PubMed  PubMed Central  Google Scholar 

  • Seki Y, Rybak J, Wicher D, et al. 2010 Physiological and morphological characterization of local interneurons in the Drosophila antennal lobe. J. Neurophysiol. 104 1007–1019

    Article  PubMed  Google Scholar 

  • Şentürk M and Bellen HJ 2018 Genetic strategies to tackle neurological diseases in fruit flies. Curr. Opin. Neurobiol. 50 24–32

    Article  PubMed  Google Scholar 

  • Shao L and Zhong Y 2019 Drosophila model of cognitive disorders: Focus on memory abnormality; in Behavioral genetics of the fly (Drosophila melanogaster) (Ed.) Dubnau J (Cambridge University Press) pp 162–176

    Google Scholar 

  • Shiraiwa T 2008 Multimodal chemosensory integration through the maxillary palp in Drosophila. PLoS One 3 e2191

    Article  PubMed  PubMed Central  Google Scholar 

  • Siegel RW and Hall JC 1979 Conditioned responses in courtship behavior of normal and mutant Drosophila. Proc. Natl. Acad. Sci. USA 76 3430–3434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silbering AF, Rytz R, Grosjean Y, et al. 2011 Complementary function and integrated wiring of the evolutionarily distinct Drosophila olfactory subsystems. J. Neurosci. 31 13357–13375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh SK, Srivastav S, Yadav AK, et al. 2017 Knockdown of APPL mimics transgenic Aβ induced induced neurodegenerative phenotypes in Drosophila. Neurosci. Lett. 648 8–13

    Article  CAS  PubMed  Google Scholar 

  • Stocker RF, Lienhard MC, Borst A, et al. 1990 Neuronal architecture of the antennal lobe in Drosophila melanogaster. Cell Tissue Res. 262 9–34

    Article  CAS  PubMed  Google Scholar 

  • Su CY, Menuz K and Carlson JR 2009 Olfactory perception: receptors, cells, and circuits. Cell 139 45–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sudhakaran IP, Hillebrand J, Dervan A, et al. 2013 FMRP and Ataxin-2 function together in long-term olfactory habituation and neuronal translational control. Proc. Natl. Acad. Sci. USA 111 E99–E108

    PubMed  PubMed Central  Google Scholar 

  • Tian H and Ma M 2004 Molecular organization of the olfactory septal organ. J. Neurosci. 24 8383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • The UniProt Consortium 2019 UniProt: A worldwide hub of protein knowledge. Nucleic Acid. Res. 47 D506–D515 https://doi.org/10.1093/nar/gky1049

  • Tully T and Quinn WG 1985 Classical conditioning and retention in normal and mutant Drosophila melanogaster. J. Comp. Physiol. A 157 263–277

    Article  CAS  PubMed  Google Scholar 

  • Turrel O, Vale X and Preat XT 2017 Drosophila neprilysin 1 rescues memory deficits caused by amyloid-β peptide. J. Neurosci. 37 10334–10345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueoka I, Pham HTN, Matsumoto K, et al. 2019 Autism spectrum disorder-related syndromes: Modeling with Drosophila and rodents. Int. J. Mol. Sci. 20 4071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ugur B, Chen K and Bellen Hugo J 2016 Drosophila tools and assays for the study of human diseases. Dis. Model. Mech. 9 235–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Voet M, Nijhof B, Oortveld MAW, et al. 2014 Drosophila models of early onset cognitive disorders and their clinical applications. Neurosci. Biobehav. Rev. 46 326–342

    Article  PubMed  Google Scholar 

  • Wang X, Zhao Y, Hu Y, et al. 2016 Establishment of a Drosophila AD model. J. Biol. Methods 3 e43

    Article  PubMed  PubMed Central  Google Scholar 

  • Ward A, Hong W, Favaloro V, et al. 2015 Toll receptors instruct axon and dendrite targeting and participate in synaptic partner matching in a Drosophila olfactory circuit. Neuron 85 1013–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werling DM, Brand H, An JY, et al. 2018 An analytical framework for whole-genome sequence association studies and its implications for autism spectrum disorder. Nat. Genet. 50 727–736.

  • Wishart TM, Rooney TM, Lamont DJ, et al. 2012 Combining comparative proteomics and molecular genetics uncovers regulators of synaptic and axonal stability and degeneration in vivo. PLoS Genet. 2012 e1002936

    Article  Google Scholar 

  • Xiong Y and Yu J 2018 Modeling Parkinson’s disease in Drosophila: What have we learned for dominant traits? Front. Neurol. 9 228

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu F, Schaefer M, Kida I, et al. 2005 Simultaneous activation of mouse main and accessory olfactory bulbs by odors or pheromones. J. Comp. Neurol. 489 491–500

    Article  PubMed  Google Scholar 

  • Yamamoto S, Jaiswal M, Charng WL, et al. 2014 A Drosophila genetic resource of mutants to study mechanisms underlying human genetic diseases. Cell 159 200–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YQ, Bailey AM, Matthies HJG, et al. 2001 Drosophila fragile X-related gene regulates the MAP1B homolog Futsch to control synaptic structure and function. Cell 107 591–603

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the School of Bioscience, IIT Kharagpur, for hosting and providing necessary resources. The authors especially thank their lab members, Papiya Mondal, Shreya Mandal, Sarani Dey, and Snehasis Majumder, for their constant support and encouragement.

Funding

SS is supported by CSIR-Shyama Prasad Mukherjee Junior Research Fellowship (SPM-JRF: File no. SPM-06/081(0289)/2019-EMR-I). Work in the laboratory is supported by the DBT-Ramalingaswami fellowship awarded to AD (BT/RLF/Re-entry/11/2016), grants from SERB-DST (ECR/2017/002963) to AD, and institutional support from IIT Kharagpur.

Author information

Authors and Affiliations

Authors

Contributions

Both the authors take responsibility for the accuracy and integrity of the manuscript. Conceptualization, AD and SS; writing – original draft, SS; writing – review and editing preparation, AD.

Corresponding author

Correspondence to Abhijit Das.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to disclose.

Additional information

Corresponding editor: Gaiti Hasan

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 110 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, S., Das, A. Drosophila olfaction as a model system for studying human neurological disorders. J Biosci 48, 41 (2023). https://doi.org/10.1007/s12038-023-00362-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-023-00362-2

Keywords

Navigation