Skip to main content
Log in

A Remark on the Onset of Resonance Overlap

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

This article has been updated

Abstract

Chirikov’s celebrated criterion of resonance overlap has been widely used in celestial mechanics and Hamiltonian dynamics to detect global instability, but is rarely rigorous. We introduce two simple Hamiltonian systems, each depending on two parameters measuring, respectively, the distance to resonance overlap and nonintegrability. Within some thin region of the parameter plane, classical perturbation theory shows the existence of global instability and symbolic dynamics, thus illustrating Chirikov’s criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Change history

  • 29 October 2023

    The numbering issue has been changed to 4-5.

Notes

  1. It is a matter of definition whether our analysis in the regime where \(|\mu|\ll 1\) may indeed be called “Chirikov’s criterion”: on the one hand, this regime is eligible to being analyzed with classical, perturbative tools, as we show below and contrary to the standard domain of application of the criterion; on the other hand, it does correspond to the general idea of overlapping eyes of resonance.

References

  1. Arnold, V. I., On the Nonstability of Dynamical Systems with Many Degrees of Freedom, Soviet Math. Dokl., 1964, vol. 5, no. 3, pp. 581–585; see also: Dokl. Akad. Nauk SSSR, 1964, vol. 156, no. 1, pp. 9-12.

    Google Scholar 

  2. Arnol’d, V. I., Mathematical Methods of Classical Mechanics, 2nd ed., Grad. Texts in Math., vol. 60, New York: Springer, 1997.

    Google Scholar 

  3. Chaos and Diffusion in Hamiltonian Systems: Proc. of the 4th Workshop in Astronomy and Astrophysics (Chamonix, France, Feb 1994), D. Benest, C. Froeschle (Eds.), Paris: Atlantica Séguier Frontières, 1995.

  4. Bounemoura, A., Fayad, B., and Niederman, L., Super-Exponential Stability for Generic Real-Analytic Elliptic Equilibrium Points, Adv. Math., 2020, vol. 366, 107088, 30 pp.

    Article  MathSciNet  MATH  Google Scholar 

  5. Brin, M. and Stuck, G., Introduction to Dynamical Systems, Cambridge: Cambridge Univ. Press, 2015.

    MATH  Google Scholar 

  6. Celletti, A., Efthymiopoulos, Ch., Gachet, F., Galeş, C., and Pucacco, G., Dynamical Models and the Onset of Chaos in Space Debris, Int. J. Non Linear Mech., 2017, vol. 90, pp. 147–163.

    Article  Google Scholar 

  7. Chandre, C. and Jauslin, H. R., Renormalization-Group Analysis for the Transition to Chaos in Hamiltonian Systems, Phys. Rep., 2002, vol. 365, no. 1, pp. 1–64.

    Article  MathSciNet  Google Scholar 

  8. Chen, Q. and de la Llave, R., Analytic Genericity of Diffusing Orbits in a priori Unstable Hamiltonian Systems, Nonlinearity, 2022, vol. 35, no. 4, pp. 1986–2019.

    Article  MathSciNet  MATH  Google Scholar 

  9. Chirikov, B. V., Resonance Processes in Magnetic Traps, J. Nucl. Energy: Part C, 1960, vol. 1, no. 4, pp. 253–260; see also: Soviet J. Atom. Energy, 1960, vol. 6, no. 6, pp. 464-470.

    Article  Google Scholar 

  10. Chirikov, B., A Universal Instability of Many-Dimensional Oscillator Systems, Phys. Rep., 1979, vol. 52, no. 5, pp. 263–379.

    Article  MathSciNet  Google Scholar 

  11. del-Castillo-Negrete, D., Greene, J. M., and Morrison, P. J., Area Preserving Nontwist Maps: Periodic Orbits and Transition to Chaos, Phys. D, 1996, vol. 91, no. 1–2, pp. 1–23.

    Article  MathSciNet  MATH  Google Scholar 

  12. del-Castillo-Negrete, D. and Morrison, P. J., Chaotic Transport by Rossby Waves in Shear Flow, Phys. Fluids A, 1993, vol. 5, no. 4, pp. 948–965.

    Article  MathSciNet  MATH  Google Scholar 

  13. Delshams, A. and de la Llave, R., KAM Theory and a Partial Justification of Greene’s Criterion for Nontwist Maps, SIAM J. Math. Anal., 2000, vol. 31, no. 6, pp. 1235–1269.

    Article  MathSciNet  MATH  Google Scholar 

  14. Escande, D. F., Contributions of Plasma Physics to Chaos and Nonlinear Dynamics, Plasma Phys. Control. Fusion, 2016, vol. 58, no. 11, 113001.

    Article  Google Scholar 

  15. Falcolini, C. and de la Llave, R., A Rigorous Partial Justification of Greene’s Criterion, J. Statist. Phys., 1992, vol. 67, no. 3–4, pp. 609–643.

    Article  MathSciNet  MATH  Google Scholar 

  16. Forni, G., Construction of Invariant Measures Supported within the Gaps of Aubry – Mather Sets, Ergodic Theory Dynam. Systems, 1996, vol. 16, no. 1, pp. 51–86.

    Article  MathSciNet  MATH  Google Scholar 

  17. Lichtenberg, A. J. and Lieberman, M. A., Regular and Chaotic Dynamics, 2nd ed., Appl. Math. Sci., vol. 38, New York: Springer, 1992.

    MATH  Google Scholar 

  18. MacKay, R. S., Greene’s Residue Criterion, Nonlinearity, 1992, vol. 5, no. 1, pp. 161–187.

    Article  MathSciNet  MATH  Google Scholar 

  19. Mather, J. N., Destruction of Invariant Circles, Ergodic Theory Dynam. Systems, 1988, vol. 8*, pp. 199–214.

    Article  MathSciNet  MATH  Google Scholar 

  20. Meiss, J. D., Differential Dynamical Systems, rev. ed., Math. Model. Comput., vol. 22, Philadelphia, Pa.: SIAM, 2017.

    MATH  Google Scholar 

  21. Melnikov, V. K., On the Stability of the Center for Time Periodic Perturbations, Trans. Moscow Math. Soc., 1963, vol. 12, pp. 1–57; see also: Tr. Mosk. Mat. Obs., 1963, vol. 12, no. , pp. 3-52.

    MathSciNet  Google Scholar 

  22. Morbidelli, A., Modern Celestial Mechanics: Aspects of Solar System Dynamics, London: Taylor & Francis, 2002.

    MATH  Google Scholar 

  23. Morbidelli, A. and Guzzo, M., The Nekhoroshev Theorem and the Asteroid Belt Dynamical System, Celestial Mech. Dynam. Astronom., 1996/97, vol. 65, no. 1–2, pp. 107–136.

    Article  MathSciNet  MATH  Google Scholar 

  24. Moser, J., A Rapidly Convergent Iteration Method and Non-Linear Differential Equations: 1, Ann. Scuola Norm. Sup. Pisa (3), 1966, vol. 20, no. 2, pp. 265–315.

    MathSciNet  MATH  Google Scholar 

  25. Moser, J., A Rapidly Convergent Iteration Method and Non-Linear Differential Equations: 2, Ann. Scuola Norm. Sup. Pisa (3), 1966, vol. 20, pp. 499–535.

    MathSciNet  MATH  Google Scholar 

  26. Moser, J., Stable and Random Motions in Dynamical Systems, Princeton, N.J.: Princeton Univ. Press, 2001.

    Book  MATH  Google Scholar 

  27. Nesvorný, D. and Morbidelli, A., An Analytic Model of Three-Body Mean Motion Resonances, Celestial Mech. Dynam. Astronom., 1998/99, vol. 71, no. 4, pp. 243–271.

    Article  MathSciNet  MATH  Google Scholar 

  28. Palis, J., Jr. and de Melo, W., Geometric Theory of Dynamical Systems: An Introduction, New York: Springer, 1982.

    Book  MATH  Google Scholar 

  29. Petit, A. C., Laskar, J., and Boué, G., AMD-Stability in the Presence of First-Order Mean Motion Resonances, Astron. Astrophys., 2017, vol. 607, A35, 17 pp.

    Article  Google Scholar 

  30. Poincaré, H., Les méthodes nouvelles de la mécanique céleste: Vol. 1. Solutions périodiques. Non-existence des intégrales uniformes. Solutions asymptotique, Paris: Gauthier-Villars, 1892.

    MATH  Google Scholar 

  31. Zaslavsky, G. M., Sagdeev, R. Z., Usikov, D. A., and Chernikov, A. A., Weak Chaos and Quasi-Regular Patterns, Cambridge Nonlinear Sci. Ser., vol. 1, Cambridge: Cambridge Univ. Press, 1991.

    Book  MATH  Google Scholar 

  32. Zhao, X. H., Kwek, K. H., Li, J. B., and Huang, K. L., Chaotic and Resonant Streamlines in the ABC Flow, SIAM J. Appl. Math., 1993, vol. 53, no. 1, pp. 71–77.

    Article  MathSciNet  MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

We have greatly benefitted from discussions with Cristel Chandre, Philip Morrison and Tere Seara, and from many suggestions of the referees.

Funding

M. Guardia has been supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No. 757802). This work is part of the grant PID-2021-122954NB-100 funded by MCIN/AEI/10.13039/501100011033 and “ERDF A way of making Europe”. M. Guardia is also supported by the Catalan Institution for Research and Advanced Studies via an ICREA Academia Prize 2019. This work is also supported by the Spanish State Research Agency, through the Severo Ochoa and María de Maeztu Program for Centers and Units of Excellence in R&D (CEX2020-001084-M). This work is also supported by the project of the French Agence Nationale pour la Recherche CoSyDy (ANR-CE40-0014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jacques Fejoz or Marcel Guardia.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

MSC2010

37J40

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fejoz, J., Guardia, M. A Remark on the Onset of Resonance Overlap. Regul. Chaot. Dyn. 28, 578–584 (2023). https://doi.org/10.1134/S1560354723040056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354723040056

Keywords

Navigation