Skip to main content
Log in

Applications of lattice Boltzmann method combined with smoothed profile method for particulate flows: a brief review

  • Review Article
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

Particulate flows occur in various natural and technological settings. Understanding what influences the flow characteristics and how they can be manipulated is significant from scientific and engineering perspectives. In this paper, we review the lattice Boltzmann method combined with the smoothed profile method (LBM–SPM), one of the promising simulation methods for studying particle-containing systems. We present the background theory and numerical schemes of the LBM–SPM, then review several applications of this method for particulate flows; suspension rheology, deposition and clogging of particles within the flow, and the dynamics of particles in non-Newtonian media and at the fluid interface. Finally, we confirmed the versatility and feasibility of LBM–SPM for investigating particulate flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced from reference by Lee et al. [51] with permission from the American Physical Society

Fig. 3

Reproduced from reference by Lee et al. [25] with permission from the Royal Society of Chemistry

Fig. 4.

Reproduced from reference by Lee et al. [25] with permission from the Royal Society of Chemistry

Fig. 5

Reproduced from reference by Lee et al. [66] with permission from the Royal Society of Chemistry

Fig. 6

Reproduced from reference by Lee et al. [66] with permission from the Royal Society of Chemistry

Fig. 7

Reproduced from reference by Lee et al. [73] with permission from Elsevier

Fig. 8

Reproduced from reference by Lee and Ahn [92] with permission from Elsevier

Fig. 9

Reproduced from reference by Lee and Ahn [92] with permission from Elsevier

Fig. 10

Reproduced from reference by Lee and Ahn [104] with permission from the American Physical Society

Fig. 11

Reproduced from reference by Lee and Ahn [104] with permission from the American Physical Society

Fig. 12

Reproduced from reference by Lee and Ahn [104] with permission from the American Physical Society

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Wagner NJ, Brady JF (2009) Shear thickening in colloidal dispersions. Phys Today 62(10):27–32

    CAS  Google Scholar 

  2. Mewis J, Wagner NJ (2012) Colloidal suspension rheology. Cambridge University Press

    Google Scholar 

  3. Crawford NC et al (2012) Shear thickening of chemical mechanical polishing slurries under high shear. Rheol Acta 51:637–647

    CAS  Google Scholar 

  4. Crawford NC et al (2013) Shear thickening and defect formation of fumed silica CMP slurries. Colloids Surf, A 436:87–96

    CAS  Google Scholar 

  5. Bauer W, Nötzel D (2014) Rheological properties and stability of NMP based cathode slurries for lithium ion batteries. Ceram Int 40(3):4591–4598

    CAS  Google Scholar 

  6. Bitsch B et al (2014) A novel slurry concept for the fabrication of lithium-ion battery electrodes with beneficial properties. J Power Sources 265:81–90

    CAS  Google Scholar 

  7. Bossis G, Brady JF (1989) The rheology of Brownian suspensions. J Chem Phys 91(3):1866–1874

    CAS  Google Scholar 

  8. Foss DR, Brady JF (2000) Structure, diffusion and rheology of Brownian suspensions by Stokesian dynamics simulation. J Fluid Mech 407:167–200

    CAS  Google Scholar 

  9. Santos P, Campanella O, Carignano M (2010) Brownian dynamics study of gel-forming colloidal particles. J Phys Chem B 114(41):13052–13058

    CAS  Google Scholar 

  10. Jung SY, Ahn KH (2019) Transport and deposition of colloidal particles on a patterned membrane surface: effect of cross-flow velocity and the size ratio of particle to surface pattern. J Membr Sci 572:309–319

    CAS  Google Scholar 

  11. Boek E et al (1997) Simulating the rheology of dense colloidal suspensions using dissipative particle dynamics. Phys Rev E 55(3):3124

    CAS  Google Scholar 

  12. Jamali S et al (2015) Microstructure and rheology of soft to rigid shear-thickening colloidal suspensions. J Rheol 59(6):1377–1395

    CAS  Google Scholar 

  13. Moghadam MGE, Shahmardan MM, Norouzi M (2022) Dissipative particle dynamics modeling of MR fluid flow in a novel magnetically optimized mini-MR damper. Korea-Aust Rheol J 34(4):291–315

    Google Scholar 

  14. Vázquez-Quesada A, Ellero M (2023) Numerical simulations of Brownian suspensions using smoothed dissipative particle dynamics: diffusion, rheology and microstructure. J Nonnewton Fluid Mech 317:105044

    Google Scholar 

  15. Gompper G et al (2009) Multi-particle collision dynamics: A particle-based mesoscale simulation approach to the hydrodynamics of complex fluids. Adv Comput Simul Approaches Soft Matter Sci III:1–87

    Google Scholar 

  16. Dickinson E (2013) Structure and rheology of colloidal particle gels: Insight from computer simulation. Adv Coll Interface Sci 199:114–127

    Google Scholar 

  17. Howard MP, Nikoubashman A, Palmer JC (2019) Modeling hydrodynamic interactions in soft materials with multiparticle collision dynamics. Curr Opin Chem Eng 23:34–43

    Google Scholar 

  18. Lee YK et al (2020) Hydrodynamic and frictional modulation of deformations in switchable colloidal crystallites. Proc Natl Acad Sci 117(23):12700–12706

    CAS  Google Scholar 

  19. Ladd AJ (1994) Numerical simulations of particulate suspensions via a discretized Boltzmann equation. part 1 theoretical foundation. J fluid mech 271:285–309

    CAS  Google Scholar 

  20. Ladd AJ (1994) Numerical simulations of particulate suspensions via a discretized Boltzmann equation. part 2. numerical results. J Fluid Mech 271:311–339

    CAS  Google Scholar 

  21. Shakib-Manesh A et al (2002) Shear stress in a Couette flow of liquid-particle suspensions. J Stat Phys 107(1–2):67–84

    Google Scholar 

  22. Aidun CK, Clausen JR (2010) Lattice-Boltzmann method for complex flows. Annu Rev Fluid Mech 42:439–472

    Google Scholar 

  23. Krüger T (2016) Effect of tube diameter and capillary number on platelet margination and near-wall dynamics. Rheol Acta 55(6):511–526

    Google Scholar 

  24. Jafari S, Yamamoto R, Rahnama M (2011) Lattice-Boltzmann method combined with smoothed-profile method for particulate suspensions. Phys Rev E 83(2):026702

    Google Scholar 

  25. Lee YK et al (2015) Rheology and microstructure of non-Brownian suspensions in the liquid and crystal coexistence region: strain stiffening in large amplitude oscillatory shear. Soft Matter 11(20):4061–4074

    CAS  Google Scholar 

  26. Mino Y et al (2017) Effect of internal mass in the lattice Boltzmann simulation of moving solid bodies by the smoothed-profile method. Phys Rev E 95(4):043309

    Google Scholar 

  27. Succi S (2001) The lattice Boltzmann equation: for fluid dynamics and beyond. Oxford university press

  28. Guo Z, Zhao T (2002) Lattice Boltzmann model for incompressible flows through porous media. Phys Rev E 66(3):036304

    Google Scholar 

  29. Pan C, Luo L-S, Miller CT (2006) An evaluation of lattice Boltzmann schemes for porous medium flow simulation. Comput Fluids 35(8–9):898–909

    CAS  Google Scholar 

  30. Ginzburg I, Silva G, Talon L (2015) Analysis and improvement of Brinkman lattice Boltzmann schemes: Bulk, boundary, interface Similarity and distinctness with finite elements in heterogeneous porous media. Phys Rev E 91(2):023307

    Google Scholar 

  31. Kromkamp J et al (2006) Lattice Boltzmann simulation of 2D and 3D non-Brownian suspensions in Couette flow. Chem Eng Sci 61(2):858–873

    CAS  Google Scholar 

  32. Lorenz E, Hoekstra AG, Caiazzo A (2009) Lees-Edwards boundary conditions for lattice Boltzmann suspension simulations. Phys Rev E 79(3):036706

    Google Scholar 

  33. Denniston C, Orlandini E, Yeomans J (2001) Lattice Boltzmann simulations of liquid crystal hydrodynamics. Phys Rev E 63(5):056702

    CAS  Google Scholar 

  34. Marenduzzo D et al (2007) Steady-state hydrodynamic instabilities of active liquid crystals: hybrid lattice Boltzmann simulations. Phys Rev E 76(3):031921

    CAS  Google Scholar 

  35. Onishi J, Chen Y, Ohashi H (2005) A lattice Boltzmann model for polymeric liquids. Prog Comput Fluid Dyn Int J 5(1–2):75–84

    CAS  Google Scholar 

  36. Malaspinas O, Fiétier N, Deville M (2010) Lattice Boltzmann method for the simulation of viscoelastic fluid flows. J Nonnewton Fluid Mech 165(23):1637–1653

    CAS  Google Scholar 

  37. He X, Luo L-S (1997) Lattice Boltzmann model for the incompressible Navier-Stokes equation. J Stat Phys 88(3–4):927–944

    Google Scholar 

  38. Qian Y-H, d’Humières D, Lallemand P (1992) Lattice BGK models for Navier-Stokes equation. EPL (Europhysics Letters) 17(6):479

    Google Scholar 

  39. Lallemand P, Luo L-S (2000) Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys Rev E 61(6):6546

    CAS  Google Scholar 

  40. d’Humieres D (2002) Multiple–relaxation–time lattice Boltzmann models in three dimensions. Philos Trans Royal Soc London Ser A Math Phys Eng Sci 360(1792):437–451

    Google Scholar 

  41. Lallemand P, Luo L-S (2003) Theory of the lattice Boltzmann method: acoustic and thermal properties in two and three dimensions. Phys Rev E 68(3):036706

    Google Scholar 

  42. Luo L-S et al (2011) Numerics of the lattice Boltzmann method: effects of collision models on the lattice Boltzmann simulations. Phys Rev E 83(5):056710

    Google Scholar 

  43. Ginzburg I (2005) Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation. Adv Water Resour 28(11):1171–1195

    CAS  Google Scholar 

  44. Ginzburg I, Verhaeghe F, d’Humieres D (2008) Two-relaxation-time lattice Boltzmann scheme: About parametrization, velocity, pressure and mixed boundary conditions. Commun Comput Phys 3(2):427–478

    Google Scholar 

  45. d’Humières D, Ginzburg I (2009) Viscosity independent numerical errors for Lattice Boltzmann models: from recurrence equations to “magic” collision numbers. Comput Math Appl 58(5):823–840

    Google Scholar 

  46. Lee YK (2023) Comparative study of two-relaxation time lattice Boltzmann and finite element methods for a planar 4: 1 contraction flow: a Newtonian fluid at finite Reynolds numbers. Korea-Aust Rheol J 35(1):47–54

    Google Scholar 

  47. Guo Z, Zheng C, Shi B (2002) Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys Rev E 65(4):046308

    Google Scholar 

  48. Nakayama Y, Yamamoto R (2005) Simulation method to resolve hydrodynamic interactions in colloidal dispersions. Phys Rev E 71(3):036707

    Google Scholar 

  49. Kim K, Nakayama Y, Yamamoto R (2006) Direct numerical simulations of electrophoresis of charged colloids. Phys Rev Lett 96(20):208302

    Google Scholar 

  50. Molina JJ et al (2016) Rheological evaluation of colloidal dispersions using the smoothed profile method: formulation and applications. J Fluid Mech 792:590–619

    CAS  Google Scholar 

  51. Lee YK, Ahn KH, Lee SJ (2014) Local shear stress and its correlation with local volume fraction in concentrated non-Brownian suspensions: lattice Boltzmann simulation. Phys Rev E 90(6):062317

    CAS  Google Scholar 

  52. Nguyen N-Q, Ladd A (2002) Lubrication corrections for lattice-Boltzmann simulations of particle suspensions. Phys Rev E 66(4):046708

    Google Scholar 

  53. Jahanshahi Javaran E, Rahnama M, Jafari S (2013) Investigating the applicability of combined lattice Boltzmann-smoothed profile methods in particulate systems. Part Sci Technol 31(6):643–652

    CAS  Google Scholar 

  54. Lees A, Edwards S (1972) The computer study of transport processes under extreme conditions. J Phys C: Solid State Phys 5(15):1921

    Google Scholar 

  55. Wagner AJ, Pagonabarraga I (2002) Lees-Edwards boundary conditions for lattice Boltzmann. J Stat Phys 107:521–537

    Google Scholar 

  56. Javaran EJ, Rahnama M, Jafari S (2013) Combining Lees-Edwards boundary conditions with smoothed profile-lattice Boltzmann methods to introduce shear into particle suspensions. Adv Powder Technol 24(6):1109–1118

    Google Scholar 

  57. Todd B, Evans DJ, Daivis PJ (1995) Pressure tensor for inhomogeneous fluids. Phys Rev E 52(2):1627

    CAS  Google Scholar 

  58. Krüger T, Varnik F, Raabe D (1945) Particle stress in suspensions of soft objects. Philos Trans R Soc A: Math Phys Eng Sci 2011(369):2414–2421

    Google Scholar 

  59. Raiskinmäki P et al (2003) Clustering and viscosity in a shear flow of a particulate suspension. Phys Rev E 68(6):061403

    Google Scholar 

  60. Kulkarni PM, Morris JF (2008) Suspension properties at finite Reynolds number from simulated shear flow. Phys Fluids 20(4):040602

    Google Scholar 

  61. Nam JG et al (2011) Strain stiffening of non-colloidal hard sphere suspensions dispersed in Newtonian fluid near liquid-and-crystal coexistence region. Rheol Acta 50(11–12):925–936

    CAS  Google Scholar 

  62. d’Haene P, Mewis J, Fuller G (1993) Scattering dichroism measurements of flow-induced structure of a shear thickening suspension. J Colloid Interface Sci 156(2):350–358

    CAS  Google Scholar 

  63. Hoffman RL (1998) Explanations for the cause of shear thickening in concentrated colloidal suspensions. J Rheol 42(1):111–123

    CAS  Google Scholar 

  64. Maranzano BJ, Wagner NJ (2002) Flow-small angle neutron scattering measurements of colloidal dispersion microstructure evolution through the shear thickening transition. J Chem Phys 117(22):10291–10302

    CAS  Google Scholar 

  65. Sierou A, Brady J (2002) Rheology and microstructure in concentrated noncolloidal suspensions. J Rheol 46(5):1031–1056

    CAS  Google Scholar 

  66. Lee YK, Hyun K, Ahn KH (2020) The first normal stress difference of non-Brownian hard-sphere suspensions in the oscillatory shear flow near the liquid and crystal coexistence region. Soft Matter 16(43):9864–9875

    CAS  Google Scholar 

  67. Chen V et al (1997) Particle deposition during membrane filtration of colloids: transition between concentration polarization and cake formation. J Membr Sci 125(1):109–122

    CAS  Google Scholar 

  68. Wyss HM et al (2006) Mechanism for clogging of microchannels. Phys Rev E 74(6):061402

    Google Scholar 

  69. Elimelech M, Gregory J, Jia X (2013) Particle deposition and aggregation: measurement, modelling and simulation. Butterworth-Heinemann.

  70. Riley DJ, Carbonell RG (1993) Mechanisms of particle deposition from ultrapure chemicals onto semiconductor wafers: deposition from bulk liquid during wafer submersion. J Colloid Interface Sci 158(2):259–273

    CAS  Google Scholar 

  71. Bryers JD (1987) Biologically active surfaces: processes governing the formation and persistence of biofilms. Biotechnol Prog 3(2):57–68

    CAS  Google Scholar 

  72. Vrijenhoek EM, Hong S, Elimelech M (2001) Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes. J Membr Sci 188(1):115–128

    CAS  Google Scholar 

  73. Lee YK et al (2018) Deposition of sticky spheres in channel flow: Modeling of surface coverage evolution requires accurate sphere-sphere collision hydrodynamics. J Colloid Interface Sci 530:383–393

    CAS  Google Scholar 

  74. Nishitani J, Mino Y, Matsuyama H (2019) Numerical simulation of particulate cake formation in cross-flow microfiltration: effects of attractive forces. Adv Powder Technol 30(8):1592–1599

    CAS  Google Scholar 

  75. Cundall PA, Strack OD (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65

    Google Scholar 

  76. Mino Y, Sakai S, Matsuyama H (2018) Simulations of particulate flow passing through membrane pore under dead-end and constant-pressure filtration condition. Chem Eng Sci 190:68–76

    CAS  Google Scholar 

  77. Kawashima K et al (2022) Numerical modeling for particulate flow through realistic microporous structure of microfiltration membrane: Direct numerical simulation coordinated with focused ion beam scanning electron microscopy. Powder Technol 410:117872

    CAS  Google Scholar 

  78. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373

    CAS  Google Scholar 

  79. Jain R, Lee L (2012) Fiber reinforced polymer (FRP) composites for infrastructure applications: focusing on innovation, technology implementation and sustainability. Springer

  80. Kim B, Kim JM (2016) Elasto-inertial particle focusing under the viscoelastic flow of DNA solution in a square channel. Biomicrofluidics. https://doi.org/10.1063/1.4944628

    Article  Google Scholar 

  81. Song HY et al (2016) Relationship between particle focusing and dimensionless numbers in elasto-inertial focusing. Rheol Acta 55:889–900

    CAS  Google Scholar 

  82. Hwang WR, Hulsen MA, Meijer HE (2004) Direct simulations of particle suspensions in a viscoelastic fluid in sliding bi-periodic frames. J Nonnewton Fluid Mech 121(1):15–33

    CAS  Google Scholar 

  83. Hao J et al (2009) A fictitious domain/distributed Lagrange multiplier method for the particulate flow of Oldroyd-B fluids: a positive definiteness preserving approach. J Nonnewton Fluid Mech 156(1–2):95–111

    CAS  Google Scholar 

  84. Ji S et al (2011) Mesoscale hydrodynamic modeling of a colloid in shear-thinning viscoelastic fluids under shear flow. J Chem Phys. https://doi.org/10.1063/1.3646307

    Article  Google Scholar 

  85. D’Avino G et al (2013) Rheology of viscoelastic suspensions of spheres under small and large amplitude oscillatory shear by numerical simulations. J Rheol 57(3):813–839

    CAS  Google Scholar 

  86. Yang M, Krishnan S, Shaqfeh ES (2016) Numerical simulations of the rheology of suspensions of rigid spheres at low volume fraction in a viscoelastic fluid under shear. J Nonnewton Fluid Mech 233:181–197

    CAS  Google Scholar 

  87. Vázquez-Quesada A et al (2019) Shear thickening of a non-colloidal suspension with a viscoelastic matrix. J Fluid Mech 880:1070–1094

    Google Scholar 

  88. Chen J, Hwang WR (2021) Shear rheology of circular particle suspensions in a Bingham fluid using numerical simulations. Korea-Aust Rheol J 33(3):273–282

    Google Scholar 

  89. Sobhani S, Bazargan S, Sadeghy K (2019) Sedimentation of an elliptic rigid particle in a yield-stress fluid: a lattice-Boltzmann simulation. Phys Fluids. https://doi.org/10.1063/1.5111633

    Article  Google Scholar 

  90. Tazangi HR, Goharrizi AS, Javaran EJ (2021) Simulation of particles settling in power-law fluids by combined lattice Boltzmann-smoothed profile methods. Int J Sedim Res 36(5):637–655

    Google Scholar 

  91. Tazangi HR, Goharrizi AS, Javaran EJ (2021) Comparison of the rheological behavior of particulate suspensions in power-law and Newtonian fluids by combined improved smoothed profile-lattice Boltzmann methods. Korea-Aust Rheol J 33(3):293–306

    Google Scholar 

  92. Lee YK, Ahn KH (2017) A novel lattice Boltzmann method for the dynamics of rigid particles suspended in a viscoelastic medium. J Nonnewton Fluid Mech 244:75–84

    CAS  Google Scholar 

  93. Alves M, Pinho F, Oliveira P (2001) The flow of viscoelastic fluids past a cylinder: finite-volume high-resolution methods. J Nonnewton Fluid Mech 97(2–3):207–232

    CAS  Google Scholar 

  94. Hulsen MA, Fattal R, Kupferman R (2005) Flow of viscoelastic fluids past a cylinder at high Weissenberg number: stabilized simulations using matrix logarithms. J Nonnewton Fluid Mech 127(1):27–39

    CAS  Google Scholar 

  95. Coronado OM et al (2006) Four-field Galerkin/least-squares formulation for viscoelastic fluids. J Nonnewton Fluid Mech 140(1–3):132–144

    CAS  Google Scholar 

  96. Ribeiro V et al (2012) Three-dimensional effects in laminar flow past a confined cylinder. Chem Eng Sci 84:155–169

    CAS  Google Scholar 

  97. Zahn K, Maret G (2000) Dynamic criteria for melting in two dimensions. Phys Rev Lett 85(17):3656

    CAS  Google Scholar 

  98. Bausch A et al (2003) Grain boundary scars and spherical crystallography. Science 299(5613):1716–1718

    CAS  Google Scholar 

  99. Fendler JH (1996) Nanoparticles at air/water interfaces. Curr Opin Colloid Interface Sci 2(1):202–207

    Google Scholar 

  100. Swift MR et al (1996) Lattice Boltzmann simulations of liquid-gas and binary fluid systems. Phys Rev E 54(5):5041

    CAS  Google Scholar 

  101. Mino Y et al (2022) Lattice Boltzmann model for capillary interactions between particles at a liquid-vapor interface under gravity. Phys Rev E 105(4):045316

    CAS  Google Scholar 

  102. Mino Y, Shinto H (2020) Lattice Boltzmann method for simulation of wettable particles at a fluid-fluid interface under gravity. Phys Rev E 101(3):033304

    CAS  Google Scholar 

  103. Mino Y et al (2022) Numerical simulation of a drying colloidal suspension on a wettable substrate using the lattice Boltzmann method. Chem Eng Sci 263:118050

    CAS  Google Scholar 

  104. Lee YK, Ahn KH (2020) Particle dynamics at fluid interfaces studied by the color gradient lattice Boltzmann method coupled with the smoothed profile method. Phys Rev E 101(5):053302

    CAS  Google Scholar 

  105. Leclaire S, Reggio M, Trépanier J-Y (2013) Progress and investigation on lattice Boltzmann modeling of multiple immiscible fluids or components with variable density and viscosity ratios. J Comput Phys 246:318–342

    CAS  Google Scholar 

  106. Kralchevsky PA, Nagayama K (1994) Capillary forces between colloidal particles. Langmuir 10(1):23–36

    CAS  Google Scholar 

  107. Danov KD, Pouligny B, Kralchevsky PA (2001) Capillary forces between colloidal particles confined in a liquid film: the finite-meniscus problem. Langmuir 17(21):6599–6609

    CAS  Google Scholar 

  108. Danov KD, Kralchevsky PA (2010) Capillary forces between particles at a liquid interface: general theoretical approach and interactions between capillary multipoles. Adv Coll Interface Sci 154(1):91–103

    CAS  Google Scholar 

  109. Onishi J et al (2008) Lattice Boltzmann simulation of capillary interactions among colloidal particles. Comput Math Appl 55(7):1541–1553

    Google Scholar 

  110. Joshi AS, Sun Y (2009) Multiphase lattice Boltzmann method for particle suspensions. Phys Rev E 79(6):066703

    Google Scholar 

  111. Stratford K et al (2005) Colloidal jamming at interfaces: a route to fluid-bicontinuous gels. Science 309(5744):2198–2201

    CAS  Google Scholar 

  112. Koos E, Willenbacher N (2011) Capillary forces in suspension rheology. Science 331(6019):897–900

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Research Foundation of Korea (NRF) grants funded by the Korean government (MSIT) (NRF-2018R1A5A1024127 and RS-2022-00166649).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Ki Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Y.K. Applications of lattice Boltzmann method combined with smoothed profile method for particulate flows: a brief review. Korea-Aust. Rheol. J. 35, 213–228 (2023). https://doi.org/10.1007/s13367-023-00077-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-023-00077-8

Keywords

Navigation