Skip to main content
Log in

Combination of RNAseq and RADseq to Identify Physiological and Adaptive Responses to Acidification in the Eastern Oyster (Crassostrea virginica)

  • Research
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Ocean acidification (OA) is a major stressor threatening marine calcifiers, including the eastern oyster (Crassostrea virginica). In this paper, we provide insight into the molecular mechanisms associated with resilience to OA, with the dual intentions of probing both acclimation and adaptation potential in this species. C. virginica were spawned, and larvae were reared in control or acidified conditions immediately after fertilization. RNA samples were collected from larvae and juveniles, and DNA samples were collected from juveniles after undergoing OA-induced mortality and used to contrast gene expression (RNAseq) and SNP (ddRADseq) profiles from animals reared under both conditions. Results showed convergence of evidence from both approaches, particularly in genes involved in biomineralization that displayed significant changes in variant frequencies and gene expression levels among juveniles that survived acidification as compared to controls. Downregulated genes were related to immune processes, supporting previous studies demonstrating a reduction in immunity from exposure to OA. Acclimation to OA via regulation of gene expression might confer short-term resilience to immediate threats; however, the costs may not be sustainable, underscoring the importance of selection of resilient genotypes. Here, we identified SNPs associated with survival under OA conditions, suggesting that this commercially and ecologically important species might have the genetic variation needed for adaptation to future acidification. The identification of genetic features associated with OA resilience is a highly-needed step for the development of marker-assisted selection of oyster stocks for aquaculture and restoration activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Accessibility

Sequence reads are deposited in the SRA NCBI database and can be found under the BioProject ID PRJNA765289.

References

  • Aguilera F, McDougall C, Degnan BM (2017) Co-option and de novo gene evolution underlie molluscan shell diversity. Mol Biol Evol 34(4):779–792

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alexa A, Rahnenfuhrer J (2020) topGO: Enrichment analysis for gene ontology. R package version 2.40.0

    Google Scholar 

  • Arivalagan J, Yarra T, Marie B, Sleight VA, Duvernois-Berthet E, Clark MS, Marie A, Berland S (2017) Insights from the shell proteome: biomineralization to adaptation. Mol Biol Evol 34:66–77

    Article  CAS  PubMed  Google Scholar 

  • Barbosa M (2020) Physiological and molecular traits associated with resilience to ocean acidification in Crassostrea virginica. State University of New York at Stony Brook (Doctoral dissertation)

    Google Scholar 

  • Barbosa M, Schwaner C, Pales Espinosa E, Allam B (2022) A transcriptomic analysis of phenotypic plasticity in Crassostrea virginica larvae under experimental acidification. Genes 13:1529. https://doi.org/10.3390/genes13091529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barret DH, Schluter D (2008) Adaptation from standing genetic variation. Trends Ecol Evol 23:38–44

    Article  Google Scholar 

  • Barros P, Sobral P, Range P, Chicharo L, Matias D (2013) Effects of sea-water acidification on fertilization and larval development of the oyster Crassostrea gigas. J Exp Mar Biol Ecol 440:200–206

    Article  Google Scholar 

  • Baumann H, Wallace RB, Tagliaferri T, Gobler CJ (2015) Large natural pH, CO2, and O2 fluctuations in a temperate tidal salt marsh on diel, seasonal, and interannual time scales. Estuaries Coasts 38:220–231

    Article  CAS  Google Scholar 

  • Bay RA, Palumbi SR (2014) Multilocus adaptation associated with heat resistance in reef-building corals. Curr Biol 24:2952–2956

    Article  CAS  PubMed  Google Scholar 

  • Beniash E, Ivanina A, Lieb NS, Kurochkin I, Sokolova IM (2010) Elevated level of carbon dioxide affects metabolism and shell formation in oysters Crassostrea virginica. Mar Ecol Prog Ser 419:95–108

    Article  CAS  Google Scholar 

  • Bibby R, Widdicombe S, Parry H, Spicer J, Pipe R (2008) Effects of ocean acidification on the immune response of the blue mussel Mytilus edulis. Aquat Biol 2:67–74

    Article  Google Scholar 

  • Bitter MC, Kapsenberg L, Gattuso JP, Pfister CA (2019) Standing genetic variation fuels rapid adaptation to ocean acidification. Nat Commun 10:5821. https://doi.org/10.1038/s41467-019-13767-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bitter MC, Kapsenberg L, Silliman K, Gattuso JP, Pfister CA (2021) Magnitude and predictability of pH fluctuations shape plastic responses to ocean acidification. Am Nat 197:486–501

    Article  PubMed  Google Scholar 

  • Blank S, Arnoldi M, Khoshnavaz S, Treccani L, Kuntz M, Mann K, Grathwohl G, Fritz M (2003) The nacre protein perlucin nucleates growth of calcium carbonate crystals. J Microsc 212:280–291

    Article  CAS  PubMed  Google Scholar 

  • Boutet I, Monteiro HJA, Baudry L, Takeuchi T, Bonnivard E, Billoud B, Farhat S, Gonzales-Araya R, Salaun B, Andersen AC, Toullec J, Lallier FH, Flot JF, Guiglielmoni N, Guo X, Li C, Allam B, Pales-Espinosa E, Hemmer-Hansen J, Moreau P, Marbouty M, Koszul R, Tanugy A (2022) Chromosomal assembly of the flat oyster (Ostrea edulis L.) genome as a new genetic resource for aquaculture. Evol Appl. https://doi.org/10.1111/eva.13462

    Article  PubMed  PubMed Central  Google Scholar 

  • Burgos-Aceves MA, Faggio C (2017) An approach to the study of the immunity functions of bivalve hemocytes: physiology and molecular aspects. Fish Shellfish Immunol 67:513–517

    Article  CAS  PubMed  Google Scholar 

  • Calosi P, Rastrick SPS, Lombardi C, de Guzman HJ, Davidson L, Jahnke M, Giangrande A, Hardege JD, Schulze A, Spicer JI, Gambi MC (2013) Adaptation and acclimatization to ocean acidification in marine ectotherms: an in suite transplant experiment with polychaetes at a shallow CO2 vent system. Philos Trans R Soc B 368:2012044. https://doi.org/10.1098/rstb.2012.0444

    Article  CAS  Google Scholar 

  • Cai LS, Wang L, Song K, Lu KL, Zhang CX, Rahimnejad S (2020) Evaluation of protein requirement of spotted seabass (Lateolabrax maculatus) under two temperatures, and the liver transcriptome response to thermal stress. Aquaculture 516:734615

    Article  CAS  Google Scholar 

  • Cao R, Wang Q, Yang D, Liu Y, Ran W, Qu Y, Wu H, Cong M, Li F, Ji C, Zhao J (2018) CO2 -induced ocean acidification impairs the immune function of the Pacific oyster against Vibrio splendidus challenge: an integrated study from a cellular and proteomic perspective. Sci Total Environ 625:1574–1583. https://doi.org/10.1016/j.scitotenv.2018.01.056

    Article  CAS  PubMed  Google Scholar 

  • Carreiro-Silva M, Cerqueira T, Godinho A, Caetano M, Santos RS, Bettencourt R (2014) Molecular mechanisms underlying the physiological responses of the cold-water coral Desmophyllum dianthus to ocean acidification. Coral Reefs 33:465–476

    Article  Google Scholar 

  • Castillo N, Saavedra LM, Vargas CA, Gallardo-Escarate C, Detree C (2017) Ocean acidification and pathogen exposure modulate the immune response of the edible mussel Mytilus chilensis. Fish Shellfish Immunol 70:149–155

    Article  CAS  PubMed  Google Scholar 

  • Chegwidden WR, Carter ND, Edwards YH (2000) The carbonic anhydrases: new horizons. Birkhäuser, Basel

    Book  Google Scholar 

  • Choi Y, Sims GE, Murphy S, Miller JR, Chan AP (2012) Predicting the functional effect of amino acid substitutions and indels. PLoS ONE 7:e46688. https://doi.org/10.1371/journal.pone.0046688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coban-Akdemir Z, White JJ, Song X, Jhangiani SN, Faith JM, Gambin T, Bayram Y, Chinn IK, Karaca E, Punetha J, Poli C, Boerwinkle E, Shaw CA, Orange JS, Gibbs RA, Lappalainen T, Lupski JR, Carvalho CMB (2018) Identifying genes whose mutant transcripts cause dominant disease traits by potential gain-of-function alleles. Am J Hum Genet 103:171–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuttell L, Vaughan A, Silva E, Escaron CJ, Lavine M, Van Goethem E, Eid JP, Quirin M, Franc NC (2008) Undertaker, a Drosophila junctophilin, links draper-mediated phagocytosis and calcium homeostasis. Cell 135:524–534

    Article  CAS  PubMed  Google Scholar 

  • DeWit P, Palumbi SR (2013) Transcriptome-wide polymorphisms of red abalone (Haliotis rufescens) reveal patterns of gene flow and local adaptation. Mol Ecol 22:2884–2897

    Article  CAS  Google Scholar 

  • De Wit P, Durland E, Ventura A, Langdon CJ (2018) Gene expression correlated with delay in shell formation in larval Pacific oysters (Crassostrea gigas) exposed to experimental ocean acidification provides insights into shell formation mechanisms. BMC Genomics 19:160. https://doi.org/10.1186/s12864-018-4519-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dineshram R, Quan Q, Sharma R, Chandramouli K, Yalamanchili HK, Chu I, Thiyagarjan V (2015) Comparative and quantitative proteomics reveal the adaptive strategies of oyster larvae to ocean acidification. Proteomics 15:4120–4134

    Article  CAS  PubMed  Google Scholar 

  • Downey-Wall AM, Cameron LP, Ford BM, McNally EM, Venkataraman YR, Roberts SB, Ries JB, Lotterhos KE (2020) Ocean acidification induces subtle shifts in gene expression and DNA methylation in mantle tissue of the Eastern oyster (Crassostrea virginica). Front Mar Sci 7:566419. https://doi.org/10.3389/fmars.2020.566419

    Article  Google Scholar 

  • Dyachuk V (2018) Extracellular matrix components in Bivalvia: shell and ECM components in development and adult tissues. Fish Aqua J 9:2. https://doi.org/10.4172/2150-3508.1000248

    Article  Google Scholar 

  • Endo Y, Matsushita M, Fujita T (2007) Role of ficolin in innate immunity and its molecular basis. Immunobiology 212:371–379

    Article  CAS  PubMed  Google Scholar 

  • Evans TG, Chang F, Menge BA, Hofmann GE (2013) Transcriptomic responses to ocean acidification in larval sea urchins from a naturally variable pH environment. Mol Ecol 22:1609–1625

    Article  CAS  PubMed  Google Scholar 

  • Fabbri E, Valbonesi P, Franzellitti S (2008) HSP expression in bivalves ISJ 5:135–161

    Google Scholar 

  • Farhat S, Tanguy A, Pales Espinosa E, Guo X, Boutet I, Smolowitz R, Murphy D, Rivara GJ, Allam B (2020) Identification of variants associated with hard clam, Mercenaria mercenaria, resistance to quahog parasite unknown disease. Genomics 112:4887–4896

    Article  CAS  PubMed  Google Scholar 

  • Foll M, Gaggiotti OE (2008) A genome scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977–993

    Article  PubMed  PubMed Central  Google Scholar 

  • Foulon V, Boudry P, Artiguad S, Guerard F, Hellio C (2019) In silico analysis of the Pacific oyster (Crassostrea gigas) transcriptome over developmental stages reveals candidate genes for larval settlement. Int J Mol Sci 20:197. https://doi.org/10.3390/ijms20010197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frieder CA, Applebaum SL, Pan TCF, Hedgecock D, Manahan DT (2017) Metabolic cost of calcification in bivalve larvae under experimental ocean acidification. ICES J Mar Sci 74:941–954

    Article  Google Scholar 

  • Gallager SM (1988) Visual observation of particle manipulation during feeding in larvae of a bivalve mollusc. Bull Mar Sci 43:344–365

    Google Scholar 

  • Gazeau F, Quiblier C, Jansen JM, Gattuso JP, Middleburg JJ, Heip CHR (2007) Impact of elevated CO2 on shellfish calcification. Geophys Res Lett 34:L07603. https://doi.org/10.1029/2006GL028554

    Article  CAS  Google Scholar 

  • Gazeau F, Gattuso JP, Dawber C, Pronker AE, Peene F, Peene J, Heip CHR, Middelburg JJ (2010) Effect of ocean acidification on the early life stages of the blue mussel Mytilus edulis. Biogeosciences 7:2051–2060

    Article  CAS  Google Scholar 

  • Gazeau F, Parker LM, Comeau S, Gattuso JP, O’Connor WA, Martin S, Pörtner HO, Ross PM (2013) Impacts of ocean acidification on marine shelled molluscs. Mar Biol 160:2207–2245

    Article  CAS  Google Scholar 

  • Glazier A, Herrera S, Weinning A, Kurman M, Gomez CE, Cordes E (2020) Regulation of ion transport and energy metabolism enables certain coral genotypes to maintain calcification under experimental ocean acidification. Mol Ecol 29:1657–1673

    Article  CAS  PubMed  Google Scholar 

  • Gobler CJ, Talmage SC (2014) Physiological response and resilience of early life-stage Eastern oysters (Crassostrea virginica) to past, present and future ocean acidification. Conserv Physiol 2:cou004. https://doi.org/10.1093/conphys/cou004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goncalves P, Anderson K, Thompson EL, Melwani A, Parker L, Ross PM, Raftos DA (2016) Rapid transcriptional acclimation following transgenerational exposure of oysters to ocean acidification. Mol Ecol 25:4836–4849

    Article  CAS  PubMed  Google Scholar 

  • Goncalves P, Jones DB, Thompson EL, Parker LM, Ross PM, Raftos DA (2017) Transcriptomic profiling of adaptive responses to ocean acidification. Mol Ecol 26:5974–5988

    Article  CAS  PubMed  Google Scholar 

  • Griffiths JS, Pan TF, Kelly MW (2019) Differential responses to ocean acidification between populations of Balanophyllia elegans corals from high and low upwelling environments. Mol Ecol 28:2715–2730

    Article  CAS  PubMed  Google Scholar 

  • Grunwald NJ, Kamvar ZN, Everhart SE, Tabima JF, Kanus BJ (2017) Population genetics and genomics in R. Retrieved from https://grunwaldlab.github.io/Population_Genetics_in_R/. Accessed 30 Jul 2019

  • Helm MM, Bourne N, Lovatelli A (2004) Hatchery culture of bivalves: a practical manual. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Hermisson J, Pennings PS (2005) Soft sweeps: molecular population genetics of adaptation from standing genetic variation. Genetics 169:2335–2352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernroth B, Baden S, Thorndyke M, Dupont S (2011) Immune suppression of the echinoderm Asterias rubens (L.) following long-term ocean acidification. Aquat 103:222–224

    CAS  Google Scholar 

  • Hess JE, Campbell NR, Close DA, Docker MF, Narum SR (2013) Population genomics of Pacific lamprey: adaptive variation in a highly dispersive species. Mol Ecol 22:2898–2916

    Article  CAS  PubMed  Google Scholar 

  • Hettinger A, Sanford E, Hill TM, Hosfelt JD, Russell AD, Gaylord B (2013) The influence of food supply on the response of Olympia oyster larvae to ocean acidification. Biogeosciences 10:6629–6638

    Article  Google Scholar 

  • Hüning AK, Melzner F, Thomsen J, Gutowska MA, Krämer L, Frickenhaus S, Rosenstiel P, Pörtner HO, Philipp EER, Lucassen M (2013) Impacts of seawater acidification on mantle gene expression patterns of the Baltic Sea blue mussel: implications for shell formation and energy metabolism. Mar Biol 160:1845–1861

    Article  Google Scholar 

  • Hunt S (1987) Amino acid compositions of periostracal proteins from molluscs living in the vicinity of deep sea hydrothermal vents: an unusual methionine-rich structural protein. Comp Biochem Phy b 88:1013–1021

    Article  Google Scholar 

  • Hunt R, Sauna ZE, Ambudkar SV, Gottesman MM, Kimchi-Sarfaty C (2009) Silent (synonymous) SNPs: should we care about them? Single nucleotide polymorphisms: methods and protocols. Humana Press, Totowa, NJ, pp 23–39

    Chapter  Google Scholar 

  • Johnson KM, Hofmann GE (2017) Transcriptomic response of the Antarctic pteropod Limacina helicina antarctica to ocean acidification. BMC Genomics 18(1):1–16

    Article  Google Scholar 

  • Jong MJ, Jong JF, Hoelzel AR, Janke A (2021) SambaR: an R package for fast, easy and reproducible population-genetic analyses of biallelic SNP datasets. Mol Ecol Resourc 21:1369–1379

    Article  Google Scholar 

  • Kapsenberg L, Miglioli A, Bitter MC, Tambutte E, Dumollard R, Gattuso JP (2018) Ocean pH fluctuations affect mussel larvae at key developmental transitions. Proc Royal Soc B 285:20182381. https://doi.org/10.1098/rspb.2018.2381

    Article  CAS  Google Scholar 

  • Kelly MW, Padilla-Gamiño JL, Hofmann GE (2013) Natural variation and the capacity to adapt to ocean acidification in the keystone sea urchin Strongylocentrotus purpuratus. Glob Change Biol 19:2536–2546

    Article  Google Scholar 

  • Kim D, Paggi JM, Park C, Bennett C, Salzberg SL (2019) Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37:907–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kocot KM, Aguilera F, McDougall C, Jackson DJ, Degnan BM (2016) Sea shell diversity and rapidly evolving secretomes: insights into the evolution of biomineralization. Front Zool 13:23

    Article  PubMed  PubMed Central  Google Scholar 

  • Kurihara H, Kato S, Ishimatsu A (2007) Effects of increased seawater pCO2 on early development of the oyster Crassostrea gigas. Aquat Biol 1:91–98

    Article  CAS  Google Scholar 

  • Larmuseau MHD, Vancampenhout K, Raeymaekers JAM, Van Houdt JKJ, Volckaert FAM (2010) Differential modes of selection on the rhodopsin gene in coastal Baltic and North Sea populations of the sand goby, Pomatoschistus minutus. Mol Ecol 19:2256–2268

    Article  CAS  PubMed  Google Scholar 

  • Layton KK, Bradbury IR (2022) Harnessing the power of multi-omics data for predicting climate change response. J Anim Ecol 91(6):1064–1072

    Article  PubMed  Google Scholar 

  • Lelong C, Mathieu M, Favrel P (2001) Structure and expression of mGDF, a new member of the transforming growth factor-B superfamily in the bivalve mollusc Crassostrea gigas. Eur J Biochem 267:3986–3993

    Article  Google Scholar 

  • Li S, Liu Y, Liu C, Huang J, Zheng G, Xie L, Zhang R (2015) Morphology and classification of hemocytes in Pinctada fucata and their responses to ocean acidification and warming. Fish Shellfish Immunol 45:194–202

    Article  CAS  PubMed  Google Scholar 

  • Li S, Liu C, Huang J, Liu Y, Zhang S, Zheng G, Xie L, Zhang R (2016) Transcriptome and biomineralization responses of the pearl oyster Pinctada fucata to elevated CO2 and temperature. Sci Rep 6:18943. https://doi.org/10.1038/srep18943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Shi W, Guo C, Zhao X, Han Y, Peng C, Chai X, Liu G (2016) Ocean acidification weakens the immune response of blood clam through hampering the NF-kappa β and toll-like receptor pathways. Fish Shellfish Immunol 54:322–327

    Article  CAS  PubMed  Google Scholar 

  • Loosanoff VL (1966) Time and intensity of setting of the oyster, Crassostrea virginica, in Long Island Sound. Biol Bull 130:211–227

    Article  Google Scholar 

  • Lopez-Landavery EA, Carpizo-Ituarte EJ, Perez-Carrasco L, Diaz F, De le Cruz FL, Garcia-Esquivel Z, Hernandez-Ayon JM, Galindo-Sanchez CE (2021) Acidification stress effect on umbonate veliger larval development in panopea globosa. Mar Poll Bull 163:111945

    Article  CAS  Google Scholar 

  • Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press, Oxford

    Book  Google Scholar 

  • Luu K, Bazin E, Blum MGB (2017) pcadapt: a R package to perform genome scans for selection based on principal component analysis. Mol Ecol Resour 1:67–77

    Article  Google Scholar 

  • Maas AE, Lawson G, Tarrant AM (2015) Transcriptome-wide analysis of the response of the thecosome pteropod clio pyramidata to short-term CO2 exposure. Comp Biochem Physiol Part d Genom Proteom 16:1–9

    CAS  Google Scholar 

  • Manaka J, Kuraishi T, Shiratsuchi A, Nakai Y, Higashida H, Henson P, Nakanishi Y (2004) Draper-mediated and phosphatidylserine-independent phagocytosis of apoptotic cells by Drosophila hemoctyes/macrophages. J Biol Chem 279:48466–48476

    Article  CAS  PubMed  Google Scholar 

  • Marie B, Joubert C, Tayalé A, Zanella-Cléon BC, Piquemal D, Cochennec-Laureau N, Marin F, Gueguen Y, Montagnani C (2012) Different secretory repertoires control the biomineralization processes of prism and nacre deposition of the pearl oyster shell. PNAS 109:20986–20991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marie B, Arivalagan J, Matheron L, Bolbach G, Berland S, Marie A, Marin F (2017) Deep conservation of bivalve nacre proteins highlighted by shell matrix proteomics of the Unionoida Elliptio complanata and Villosa lienosa. J R Soc Interface 14:20160846. https://doi.org/10.1098/rsif.2016.0846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marin F, Corstjens P, Gaulejac BD, de Vrind-De JE, Westbroek P (2000) Mucins and molluscan calcification molecular characterization of mucoperlin, a novel mucin-like protein from the nacreous shell layer of the fan mussel Pinna nobilis (Bivalvia, pteriomorphia). J Biol Chem 275:20667–20675

    Article  CAS  PubMed  Google Scholar 

  • Martin S, Richier S, Pedrotti ML, Dupont S, Castejon C, Gerakis Y, Kerros M, Oberhansli F, Teyssie J, Jeffree R, Gattuso JP (2011) Early development and molecular plasticity in the Mediterranean sea urchin Paracentrotus lividus exposed to CO2-driven acidification. J Exp Biol 214(8):1357–1368

    Article  CAS  PubMed  Google Scholar 

  • Metzger DC (2012) Characterizing the effects of ocean acidification in larval and juvenile Manilla clam, Ruditapes philippinarum, using a transcriptomic approach. University of Washington, Washington, DC, USA (Master’s Thesis)

    Google Scholar 

  • Millero FJ (2010) Carbonate constants for estuarine waters. Mar Freshw Res 62:139–142

    Article  Google Scholar 

  • Mount AS, Wheeler AP, Paradkar RP, Snider D (2004) Hemocyte-mediate shell mineralization in the eastern oyster. Science 304:297–300

    Article  CAS  PubMed  Google Scholar 

  • Moya A, Huisman L, Ball E, Hayward D, Grasso L, Chua C, Woo HN, Gattuso JP, Foret S, Miller DJ (2012) Whole transcriptome analysis of the coral Acropora millepora reveals complex responses to CO2 driven acidification during the initiation of calcification. Mol Ecol 21:2440–2454

    Article  CAS  PubMed  Google Scholar 

  • Moya A, Huisman L, Foret S, Gattuso JP, Hayward DC, Ball EE, Miller DJ (2015) Rapid acclimation of juvenile corals to CO2-mediated acidification by upregulation of heat shock protein and Bcl-2 genes. Mol Ecol 24(2):438–452

    Article  CAS  PubMed  Google Scholar 

  • Moya A, Howes EL, Lacoue-Labarthe T, Foret S, Hanna B, Medina M, Munday PL, Ong JS, Yeyssie JL, Torda G, Watson SA, Miller DJ, Bijma J, Gattuso JP (2016) Near-future pH conditions severely impact calcification, metabolism, and the nervous system in the pteropod Heliconoides inflatus. Glob Change Biol 22:3888–3900

    Article  Google Scholar 

  • Nagai K, Yano M, Morimoto K, Miyamoto H (2007) Tyrosinase localization in mollusc shells. Comp. Biochem. Physiol. B. Biochem Mol Biol 146:207–214

    Article  Google Scholar 

  • Nikapitiya C, De Zoysa M, Oh C, Lee Y, Ekanayake PM, Whang I, Choi CY, Lee JS, Lee J (2010) Disk abalone (Haliotis discus discus) expresses a novel antistasin-like serine protease inhibitor: molecular cloning and immune response against bacterial infection. Fish Shellfish Immunol 28:661–671

    Article  CAS  PubMed  Google Scholar 

  • Nilius B, Appendino G, Owsianik G (2012) The transient receptor potential channel TRPA1: from gene to pathophysiology. Pflug Arch Eur J Phy 464:425–458

    Article  CAS  Google Scholar 

  • O’Donnell MJ, Todgham AE, Sewell MA, Hammond LM, Ruggiero K, Fangue NA, Zippay ML, Hofmann GE (2010) Ocean acidification alters skeletogenesis and gene expression in larval sea urchins. Mar Ecol Prog Ser 398:157–171

    Article  Google Scholar 

  • Palumbi S, Oliver T (2006) Genetic evidence of dispersal limitation and local adaptation in Samoan reef corals: report on ongoing research: March 2006

    Google Scholar 

  • Pan TCF, Applebaum SL, Manahan DT (2015) Experimental ocean acidification alters the allocation of metabolic energy. Proc Natl Acad Sci 112:4696–4701. https://doi.org/10.1073/pnas.1416967112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parker LM, Ross PM, O’Connor WA (2011) Populations of the Sydney rock oyster, Saccostrea glomerata, vary in response to ocean acidification. Mar Biol 158:689–697

    Article  Google Scholar 

  • Patnaik BB, Wang TH, Kang SW, Hwang HJ, Park SY, Park EB, Chung JM, Song DK, Kim C, Kim S, Lee JS, Han YS, Park HS, Lee YS (2016) Sequencing, de novo assembly, and annotation of the transcriptome of the endangered freshwater pearl bivalve, Cristaria plicata, provides novel insights into functional genes and marker discovery. PLoS ONE 11:e0148622. https://doi.org/10.1371/journal.pone.0148622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pauletto M, Milan M, Moreira R, Novoa B, Figueras A, Babbucci M, Patarnello T, Bargelloni L (2014) Deep transcriptome sequencing of Pecten maximus hemocytes: a genomic resource for bivalve immunology. Fish and Shellfish Immunol 37:154–165

    Article  CAS  Google Scholar 

  • Pespeni MH, Sanford E, Gaylord B, Hill TM, Hosflet JD, Jaris HK, LaVigne M, Lenz EA, Russell AD, Young MK, Palumbi SR (2013) Evolutionary change during experimental ocean acidification. Proc Natl Acad Sci USA 110:6937–6942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7:e37135. https://doi.org/10.1371/journal.pone.0037135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powell D, Subramanian S, Suwansaard S, Zhao M, O’Connor W, Raftos D, Elizur A (2018) The genome of the oyster Saccostrea offers insight into the environmental resilience of bivalves. DNA Res 25:655–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Putri GH, Anders S, Pyl PT, Pimada JE, Zanini F (2022) Analyzing high-throughput sequencing data in Python with HTSeq 2.0. Bioinformatics. https://doi.org/10.1093/bioinformatics/btac166

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajan KC, Vengatesen T (2020) Molecular adaptation of molluscan biomineralzation to high CO2 oceans- the known and the unknown. Mar Environ Res 155:104883

    Article  Google Scholar 

  • Rajan KC, Meng Y, Roberts SB, Vengatesen T (2021) Oyster biomineralization under ocean acidification: from genes to shell. Glob Change Biol 27:3779–3797

    Article  Google Scholar 

  • Ramajo L, Marba N, Prado L, Peron S, Lardies M, Rodriguez-Navarroo VCA, Lagos NA, Duarte CM (2015) Biomineralization changes with food supply confer juvenile scallops (Agropecten purpuratus) resistance to ocean acidification. Glob Change Biol 22:2025–2037

    Article  Google Scholar 

  • Ramajo L, Perez-Leon E, Hendriks IE, Marba N, Krause-Jensen D, Sejr MK, Blicher ME, Lagos N, Olsen Y, Duarte CM (2016) Food supply confers calcifiers resistance to ocean acidification. Sci Rep 6:19374. https://doi.org/10.10138/srep19374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reusch TBH (2013) Climate change in the oceans: evolutionary versus phenotypically plastic responses of marine animals and plants. Evo App 7:104–122

    Article  Google Scholar 

  • Rochette NC, Rivera-Colón AG, Catchen JM (2019) Stacks 2: analytical methods for paired-end sequencing improve RADseq-based population genomics. Mol Ecol 28(21):4737–4754. https://doi.org/10.1111/mec.15253

    Article  CAS  PubMed  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  PubMed  Google Scholar 

  • Rodolfo-Metalpa R, Lombardi C, Cocito S, Hall-Spencer JM, Gambi MC (2010) Effects of ocean acidification and high temperatures on the bryozoan Myriapora truncata at natural CO2 vents. Mar Ecol 31:447–456

    Article  CAS  Google Scholar 

  • Ronza P, Cao A, Robledo D, Gomez-Tato A, Alvarez-Dios JA, Hasanuzzaman AFM, Quiroga MI, Villalba A, Pardo BG, Martinez P (2018) Long-term affected flat oyster (Ostrea edulis) haemocytes show differential gene expression profiles from naive oysters in response to Bonamia ostreae. Genomics 110:390–398

    Article  CAS  PubMed  Google Scholar 

  • Saba GK, Goldsmith KA, Cooley SR, Grosse D, Meseck SL (2019) Recommended priorities for research on ecological impacts of ocean and coastal acidification in the U.S. mid-Atlantic. Estuar Coast Shelf Sci 225:106188. https://doi.org/10.1016/j.ecss.2019.04.022

    Article  CAS  Google Scholar 

  • Saco A, Rey-Campos M, Novoa B, Figueras A (2020) Transcriptomic response of mussel gills after a Vibrio splendidus infection demonstrates their role in the immune response. Front Immunol 11:615580. https://doi.org/10.3389/fimmu.2020.615580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheufler C, Brinker A, Bourenkkov G, Pegoraro S, Moroder L, Bartunik H (2000) Structure of TPR domain-peptide complexes: critical elements in the assembly of the HSP70-HSP90 multichaperone machine. Cell 101:199–210

    Article  CAS  PubMed  Google Scholar 

  • Schluter L, Lohbeck KT, Gutowska MA, Groger JP, Riebesell U, Reusch T (2014) Adaptation of a globally important coccolithophore to ocean warming and acidification. Nat Clim Change 4:1024–1030

    Article  Google Scholar 

  • Schwaner C, Barbosa M, Connors P, Park TJ, de Silva D, Griffith A, Gobbler CJ, Pales Espinosa E, Allam B (2020) Experimental acidification increases susceptibility of mercenaria mercenaria to infection by vibrio species. Mar Environ Res 154:104872. https://doi.org/10.1016/j.marenvres.2019.10487

    Article  CAS  PubMed  Google Scholar 

  • Schwaner C, Farhat S, Barbosa M, Boutet I, Tanguy A, Pales Espinosa E, Allam B (2022a) Molecular features associated with resilience to ocean acidification in the northern quahog, Mercenaria mercenaria. Mar Biotechnol. https://doi.org/10.1007/s10126-022-10183

    Article  Google Scholar 

  • Schwaner C, Farhat S, Haley J, Pales Espinosa E, Allam B (2022b) Proteomic and transcriptomic responses enable clams to correct the pH of calcifying fluids and sustain biomineralization in acidified environments. Int J Mol Sci 23:16066. https://doi.org/10.3390/imjs232416066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwaner C, Pales Espinosa E, Allam B (2023) RNAi silencing of the biomineralization gene perlucin impars oyster ability to cope with ocean acidification. Int J Mol Sci 2:3661. https://doi.org/10.3390/ijms24043661

    Article  CAS  Google Scholar 

  • Shen M, Di G, Li M, Fu J, Dai Q, Miao X, Huang M, You W, Ke C (2018) Proteomics studies on three larval stages of development and metamorphosis of Babylonia areolata. Sci Rep 8:6269. https://doi.org/10.1093/gbe/evy242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Yu C, Gu Z, Zhan X, Wang Y, Wang A (2013) Characterization of the pearl oyster (Pinctada martensii) mantle transcriptome unravels biomineralization genes. Mar Biotechnol 15:175–187

    Article  CAS  Google Scholar 

  • Shimizu K, Kimura K, Isowa Y, Oshima K, Ishikawa M, Kagi H, Kito K, Hattori M, Chiba S, Endo K (2019) Insights into the evolution of shells and love darts of land snails revealed from their matrix proteins. Genome Biol Evol 11:380–397

    Article  CAS  PubMed  Google Scholar 

  • Sigle LT, Hillyer JF (2018) Eater and draper are involved in the periostial haemocyte immune response in the mosquito Anopheles gambiae. Insect Mol Biol 27:429–438

    Article  CAS  PubMed  Google Scholar 

  • Strader ME, Wong JM, Hofmann GE (2020) Ocean acidification promotes broad transcriptomic responses in marine metazoans: a literature survey. Front Zool 17:1–23

    Article  Google Scholar 

  • Su W, Rong J, Zha S, Yan M, Fang J, Liu G (2018) Ocean acidification affects the cytoskeleton, lysozymes, and nitric oxide of hemocytes: a possible explanation for the hampered phagocytosis in blood clams. Tegillarca Granosa Front Aquat Phys 9:619. https://doi.org/10.3389/fphys.2018.00619

    Article  Google Scholar 

  • Sunday JM, Calosi P, Dupont S, Munday PL, Stillman JH, Reusch TBH (2014) Evolution in an acidifying ocean. Trends Ecol Evol 29:117–125

    Article  PubMed  Google Scholar 

  • Suzuki M, Nagasawa H (2013) Mollusk shell structures and their formation mechanism. Can J Zool 91:349–366

    Article  CAS  Google Scholar 

  • Talmage SC, Gobler CJ (2010) Effects of past, present, and future ocean carbon dioxide concentrations on the growth and survival of larval shellfish. Proc Natl Acad Sci USA 107:17246–17251. https://doi.org/10.1073/pnas.0913804107

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanio M, Kondo S, Sugio S, Kohno T (2007) Trivalent recognition unit of innate immunity system: crystal structure of trimeric human M-ficolin fibrinogen-like domain. J Biol Chem 282:3889–3895

    Article  CAS  PubMed  Google Scholar 

  • Thomsen J, Casties I, Pansch C, Körtzinger A, Melzner F (2013) Food availability outweighs ocean acidification effects in juvenile Mytilus edulis: laboratory and field experiments. Glob Change Biol 19:1017–1027

    Article  Google Scholar 

  • Thomsen J, Haynert K, Wegner KM, Melzner F (2015) Impact of seawater carbonate chemistry on the calcification of marine bivalves. Biogeosciences 12:1543–1571. https://doi.org/10.5194/bg-12-4209-2015

    Article  Google Scholar 

  • Thomsen J, Stapp LS, Haynert K, Schade H, Danelli M, Lanning G, Melzner F (2017) Naturally acidified habitat selects for ocean acidification-tolerant mussels. Sci Adv 3:e1602411. https://doi.org/10.1126/sciadv.1602411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Todgham AE, Hofmann GE (2009) Transcriptomic response of sea urchin larvae Strongylocentrotus purpuratus to CO2-driven seawater acidification. J Exp Biol 212:2579–2594

    Article  CAS  PubMed  Google Scholar 

  • Tomanek L, Zuzow MJ, Ivanina AV, Beniash E, Sikolova IM (2011) Proteomic response to elevated pCO2 level in eastern oysters, Crassostrea virginica: evidence for oxidative stress. J Exp Biol 214:1836–1844

    Article  CAS  PubMed  Google Scholar 

  • Timmins-Schiffman E, O’Donnell MJ, Friedman CS, Roberts SB (2013) Elevated pCO2 causes developmental delay in early larval Pacific oysters, Crassostrea gigas. Mar Biol 160:1973–1982

    Article  CAS  Google Scholar 

  • Timmins-Schiffman E, Coffey WD, Hua W, Nunn BL, Dickinson GH, Roberts SB (2014) Shotgun proteomics reveals physiological response to ocean acidification in Crassostrea gigas. BMC Genomics 15:951. https://doi.org/10.1186/1471-2164-15-951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trigg SA, Mitchell KR, Thompson RE, Eudeline B, Vadopalas B, Timmins-Schiffman EB, Roberts S (2020) Temporal proteomic profiling reveals insight into critical developmental processes and temperature-influenced physiological response differences in a bivalve mollusc. BMC Genomics 21:723. https://doi.org/10.1101/2020.06.05.137059

    Article  CAS  Google Scholar 

  • Uthicke S, Deshpande NP, Liddy M, Patel F, Lamare M, Wilkins MR (2019) Little evidence of adaptation potential to ocean acidification in sea urchins living in “Future Ocean” conditions at a CO2 vent. Ecol Evol 9:10004–100016

    Article  PubMed  PubMed Central  Google Scholar 

  • Wage J, Lerebours A, Hardege JD, Rotchell JM (2016) Exposure to low pH induces molecular level changes in the marine worm, Platynereis dumerilii. Ecotoxicol Environ Saf 124:105–110

    Article  CAS  PubMed  Google Scholar 

  • Waldbusser GG, Salisbury JE (2014) Ocean acidification in the coastal zone from an organism’s perspective: multiple system parameters, frequency domains, and habitats. Ann Rev Mar Sci 6:221–247

    Article  PubMed  Google Scholar 

  • Wallace RB, Baumann H, Great JS, Aller RC, Gobbler CJ (2014) Coastal ocean acidification: the other eutrophication problem. Estuar Coast Shelf Sci 148:1–13

    Article  CAS  Google Scholar 

  • Waldbusser GG, Brunner EL, Haley BA, Hales B, Langdon CJ, Prahl FG (2013) A developmental and energetic basis linking larval oyster shell formation to acidification sensitivity. Geophys Res Lett 40(10):2171–2176. https://doi.org/10.1002/grl.50449

    Article  CAS  Google Scholar 

  • Wang N, Lee YH, Lee J (2008) Recombinant perlucin nucleates the growth of calcium carbonate crystals: molecular cloning and characterization of perlucin from disk abalone, Haliotis discus discus. Comp Biochem Physiol B: Biochem 149:354–361. https://doi.org/10.1016/j.cbpb.2007.10.007

    Article  CAS  Google Scholar 

  • Wang Q, Cao R, Ning X, You L, Mu C, Wang C, Wei L, Cong M, Wu H, Zhao J (2016) Effects of ocean acidification on immune response of the Pacific oyster Crassostrea gigas. Fish and Shellfish Immunol 49:24–33

    Article  CAS  Google Scholar 

  • Wang X, Wang M, Wang W, Liu Z, Xu J, Jia Z, Chen H, Qiu L, Lv Z, Wang L, Song L (2020) Transcriptional changes of Pacific oyster Crassostrea gigas reveal essential role of calcium signal pathway in response to CO2-driven acidification. Sci Total Environ 741:140177. https://doi.org/10.1015/j.scitotenv.2020.140177

    Article  CAS  PubMed  Google Scholar 

  • Wei J, Liu B, Fan S, Li H, Chen M, Zhang B, Su J, Meng Z, Yu D (2017) Differentially expressed immune-related genes in hemocytes of the pearl oyster Pinctada fucata against allograft identified by transcriptome analysis. Fish and Shellfish Immunol 62:247–256

    Article  CAS  Google Scholar 

  • Whitlock MC, Lotterhos KE (2015) Reliable detection of loci responsible for local adaptation: inference of a null model through trimming the distribution of F(ST). Am Nat Supp 1:S24-36

    Article  Google Scholar 

  • Xiong Y, Hu L, Yan Z, Zhang J, Li H (2018) Transcriptomic analysis of embryo development in the invasive snail Pomacea canaliculata. J Molluscan Stud 84(3):233–239

    Article  Google Scholar 

  • Yang B, Pu F, Li L, You W, Ke C, Feng D (2017) Functional analysis of a tyrosinase gene involved in early larval shell biogenesis in Crassostrea angulata and its response to ocean acidification. Comp Biochem Physiol B Biochem Mol Biol 206:8–15

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Fang X, Guo X, Li L, Luo R, Xu F, Wang J (2012a) The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490:49–54. https://doi.org/10.1038/nature11413

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Miteva MA, Wang L, Alexov E (2012b) Analyzing effects of naturally occurring missense mutations. Comput Math Methods Med 2012:805827. https://doi.org/10.1155/2012/805827

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang G, Li L, Meng J, Qi H, Qu T, Xu F, Zhang L (2016) Molecular basis for adaptation of oysters to stressful marine intertidal environments. Annu Rev Anim Bio 4:357–381. https://doi.org/10.1146/annurev-animal-022114-110903

    Article  CAS  Google Scholar 

  • Zhang C, Xue Z, Yu Z, Wang H, Liu Y, Li H, Song L (2020) A tandem-repeat galectin-1 from Apostichopus japonicus with broad PAMP recognition pattern and antibacterial activity. Fish Shellfish Immunol 99:167–175

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Shi W, Han Y, Liu S, Guo C, Fu W, Chai X, Liu G (2017) Ocean acidification adversely influences metabolism, extracellular pH and calcification of an economically important marine bivalve, Tegillarca granosa. Mar Environ Res 125:82–89

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Han Y, Chen B, Xia B, Qu K, Liu G (2020) CO2-drive ocean acidification weakens mussel shell defense capacity and induces global molecular compensatory responses. Chemosphere 243:125415. https://doi.org/10.1016/j.chemosphere.2019.125415

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Marty Byrnes and Rebecca Resner of the Great Atlantic Shellfish Hatchery for providing access to their hatchery and logistical support. We would also like to thank the Marine Animal Disease Laboratory intern Margot Eckstein for help with bivalve maintenance. In addition, we would also like to thank Dr. Christopher Gobler and Andrew Lundstrom for processing DIC samples.

Funding

This research was funded by the New York Sea Grant (Projects R/XG-24 and R/XG-33 to Bassem Allam and Emmanuelle Pales Espinosa). Additional support was provided by the National Science Foundation (IOS 1656753) and the Atlantic States Marine Fisheries Commission (Contract 19–0802).

Author information

Authors and Affiliations

Authors

Contributions

Caroline Schwaner contributed to formal analysis, investigation, methodology, and writing the original draft. Sarah Farhat contributed to formal analysis and manuscript revisions. Isabelle Boutet and Arnaud Tanguy assisted with investigation and methodology. Michelle Barbosa helped with investigation. Denis Grouzdev assisted with formal analysis. Emmanuelle Pales Espinosa helped with methodology, manuscript revisions, and funding. Bassem Allam provided funding, assisted with investigation, conceptualization, project administration, and reviewing and editing.

Corresponding author

Correspondence to Bassem Allam.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwaner, C., Farhat, S., Boutet, I. et al. Combination of RNAseq and RADseq to Identify Physiological and Adaptive Responses to Acidification in the Eastern Oyster (Crassostrea virginica). Mar Biotechnol 25, 997–1019 (2023). https://doi.org/10.1007/s10126-023-10255-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-023-10255-y

Keywords

Navigation