Skip to main content

Advertisement

Log in

Immune Checkpoint Inhibitors in Patients with Pre-existing Neurologic Autoimmune Disorders

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The use of immune checkpoint inhibitors (ICIs) for oncologic indications is associated with immune-related adverse events (irAEs). Patients with pre-existing autoimmune diseases are at increased risk of irAEs and have largely been excluded from clinical trials of ICIs. Therefore, there is limited data on the safety of safety of ICIs in patients with pre-existing neurologic autoimmune diseases (nAIDs) such as myasthenia gravis and multiple sclerosis. This review aims to synthesize the literature on the post-marketing experience with ICI in patients with pre-existing nAID and to discuss possible strategies for mitigating the risk of post-ICI nAID relapses.

Recent Findings

Patients with pre-existing myasthenia gravis (MG), myositis, and paraneoplastic encephalitis appear highly susceptible to neurologic relapses of their underlying neurologic disorder following ICI initiation; these relapses can cause considerable morbidity and mortality. In patients with multiple sclerosis (MS), the risk and severity of MS relapses following ICI appears to be relatively lower compared to MG. Preliminary evidence suggests that older MS patients with no recent focal neuroinflammatory activity may be safely treated with ICI. Among the several case reports of ICI in patients with a history of Guillain–Barre syndrome (GBS), neurologic worsening was only recorded in one patient who was in the acute phase of GBS at the time of ICI start.

Summary

Initiating an ICI in a patient with pre-existing nAID involves a complex risk-benefit discussion between the patient, their oncologist, and neurologist. Relevant issues to consider before ICI include the choice of disease-modifying therapy for nAID (if any) and strategies for promptly identifying and managing nAID relapses should they occur. Currently, the literature consists mainly of case reports and case series, subject to publication bias. Prospective studies of ICI in patients with nAID are needed to improve the level of evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Shiravand Y, Khodadadi F, Kashani SMA, Hosseini-Fard SR, Hosseini S, Sadeghirad H, et al. Immune checkpoint inhibitors in cancer therapy. Curr Oncol. 2022;29(5):3044–60. https://doi.org/10.3390/curroncol29050247.

    Article  PubMed  PubMed Central  Google Scholar 

  2. • Haugh AM, Probasco JC, Johnson DB. Neurologic complications of immune checkpoint inhibitors. Expert Opin Drug Saf. 2020;19(4):479–88. https://doi.org/10.1080/14740338.2020.1738382. The authors provide a comprehensive review of the different neurological complications of ICIs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Twomey JD, Zhang B. Cancer immunotherapy update: FDA-approved checkpoint inhibitors and companion diagnostics. Aaps j. 2021;23(2):39. https://doi.org/10.1208/s12248-021-00574-0.

    Article  PubMed  Google Scholar 

  4. Vaddepally R, Doddamani R, Sodavarapu S, Madam NR, Katkar R, Kutadi AP, et al. Review of immune-related adverse events (irAEs) in non-small-cell lung cancer (NSCLC)-their incidence, management, multiorgan irAEs, and rechallenge. Biomedicines. 2022;10(4). https://doi.org/10.3390/biomedicines10040790.

  5. Danlos FX, Voisin AL, Dyevre V, Michot JM, Routier E, Taillade L, et al. Safety and efficacy of anti-programmed death 1 antibodies in patients with cancer and pre-existing autoimmune or inflammatory disease. Eur J Cancer. 2018;91:21–9. https://doi.org/10.1016/j.ejca.2017.12.008.

    Article  CAS  PubMed  Google Scholar 

  6. • Yshii LM, Hohlfeld R, Liblau RS. Inflammatory CNS disease caused by immune checkpoint inhibitors: status and perspectives. Nat Rev Neurol. 2017;13(12):755–63. https://doi.org/10.1038/nrneurol.2017.144. This paper surveys various theories about the pathophysiology and mechanism of CNS disease with ICIs.

    Article  CAS  PubMed  Google Scholar 

  7. Puzanov I, Diab A, Abdallah K, Bingham CO 3rd, Brogdon C, Dadu R, et al. Managing toxicities associated with immune checkpoint inhibitors: consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group. J Immunother Cancer. 2017;5(1):95. https://doi.org/10.1186/s40425-017-0300-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Abdel-Wahab N, Shah M, Lopez-Olivo MA, Suarez-Almazor ME. Use of immune checkpoint inhibitors in the treatment of patients with cancer and pre-existing autoimmune disease: a systematic review. Ann Intern Med. 2018;168(2):121–30. https://doi.org/10.7326/m17-2073.

    Article  PubMed  Google Scholar 

  9. Calvo V, Fernández MA, Collazo-Lorduy A, Franco F, Núñez B, Provencio M. Use of immune checkpoint inhibitors in patients with solid tumors and pre-existing autoimmune or inflammatory disease: real-world data. Lung Cancer Manag. 2021;10(4):Lmt51. https://doi.org/10.2217/lmt-2021-0003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. •• Haanen J, Ernstoff MS, Wang Y, Menzies AM, Puzanov I, Grivas P, et al. Autoimmune diseases and immune-checkpoint inhibitors for cancer therapy: review of the literature and personalized risk-based prevention strategy. Ann Oncol. 2020;31(6):724–44. https://doi.org/10.1016/j.annonc.2020.03.285.T. The authors propose risk-mitigation strategies for patients with pre-existing AID who plan to start ICI therapy

    Article  CAS  PubMed  Google Scholar 

  11. Jordan B, Benesova K, Hassel JC, Wick W, Jordan K. How we identify and treat neuromuscular toxicity induced by immune checkpoint inhibitors. ESMO Open. 2021;6(6):100317. https://doi.org/10.1016/j.esmoop.2021.100317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Abidoye O, Kim N, Fombi J. An interesting case report of myasthenia gravis exacerbation induced by durvalumab. Cureus. 2022;14(7):e26985. https://doi.org/10.7759/cureus.26985.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cooper DS, Meriggioli MN, Bonomi PD, Malik R. Severe exacerbation of myasthenia gravis associated with checkpoint inhibitor immunotherapy. J Neuromuscul Dis. 2017;4(2):169–73. https://doi.org/10.3233/jnd-170219.

    Article  PubMed  Google Scholar 

  14. Earl DE, Loochtan AI, Bedlack RS. Refractory myasthenia gravis exacerbation triggered by pembrolizumab. Muscle Nerve. 2018;57(4):E120-e121.

    Article  PubMed  Google Scholar 

  15. Zhu J, Li Y. Myasthenia gravis exacerbation associated with pembrolizumab. Muscle Nerve. 2016;54(3):506–7. https://doi.org/10.1002/mus.25055.

    Article  PubMed  Google Scholar 

  16. Kamien AK, Ana; Santhosh-Kumar, Cheruppolil. Reactivation of myasthenia gravis secondary to nivolumab: case report and literature review. J Hematol Oncol Pharm. 2019;9(1):24–9.

  17. Lau KH, et al. Exacerbation of myasthenia gravis in a patient with melanoma treated with pembrolizumab. Muscle Nerve. 2016;54(1):157–61.

    Article  PubMed  Google Scholar 

  18. Maeda O, Yokota K, Atsuta N, Katsuno M, Akiyama M, Ando Y. Nivolumab for the treatment of malignant melanoma in a patient with pre-existing myasthenia gravis. Nagoya J Med Sci. 2016;78(1):119–22.

    PubMed  PubMed Central  Google Scholar 

  19. • Snavely A, Pérez-Torres EJ, Weber JS, Sandigursky S, Thawani SP. Immune checkpoint inhibition in patients with inactive pre-existing neuromuscular autoimmune diseases. J Neurol Sci. 2022;438:120275. https://doi.org/10.1016/j.jns.2022.120275. This case series documents neurologic outcomes in patients with pre-existing neuromuscular autoimmune diseases who are treated with ICI

    Article  CAS  PubMed  Google Scholar 

  20. Mitsune A, Yanagisawa S, Fukuhara T, Miyauchi E, Morita M, Ono M, et al. Relapsed myasthenia gravis after nivolumab treatment. Intern Med. 2018;57(13):1893–7. https://doi.org/10.2169/internalmedicine.9153-17.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Phadke SD, Ghabour R, Swick BL, Swenson A, Milhem M, Zakharia Y. Pembrolizumab therapy triggering an exacerbation of pre-existing autoimmune disease: a report of 2 patient cases. J Investig Med High Impact Case Rep. 2016;4(4):2324709616674316. https://doi.org/10.1177/2324709616674316.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Safa H, Johnson DH, Trinh VA, Rodgers TE, Lin H, Suarez-Almazor ME, et al. Immune checkpoint inhibitor-related myasthenia gravis: single center experience and systematic review of the literature. J Immunother Cancer. 2019;7(1):319. https://doi.org/10.1186/s40425-019-0774-y.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Williams S, et al. Outcome of patient with myasthenia gravis with the use of immunotherapy in metastatic Merkel cell carcinoma. Oxf Med Case Reports. 2022;2022(2):omac012.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zaremba A, et al. Metastatic Merkel cell carcinoma and myasthenia gravis: contraindication for therapy with immune checkpoint inhibitors? J Immunother Cancer. 2019;7(1):141. https://doi.org/10.1186/s40425-019-0626-9 

  25. Menzies AM, Johnson DB, Ramanujam S, Atkinson VG, Wong ANM, Park JJ, et al. Anti-PD-1 therapy in patients with advanced melanoma and pre-existing autoimmune disorders or major toxicity with ipilimumab. Ann Oncol. 2017;28(2):368–76. https://doi.org/10.1093/annonc/mdw443.

    Article  CAS  PubMed  Google Scholar 

  26. Johnson DB, Sullivan RJ, Ott PA, Carlino MS, Khushalani NI, Ye F, et al. Ipilimumab therapy in patients with advanced melanoma and pre-existing autoimmune disorders. JAMA Oncol. 2016;2(2):234–40. https://doi.org/10.1001/jamaoncol.2015.4368.

    Article  PubMed  Google Scholar 

  27. Ishii A, Yokoyama M, Tsuji H, Fujii Y, Tamaoka A. Pembrolizumab treatment of metastatic urothelial cancer without exacerbating myasthenia gravis. eNeurologicalSci. 2020;19:100236. https://doi.org/10.1016/j.ensci.2020.100236.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sanders DB, Burns TM, Cutter GR, Massey JM, Juel VC, Hobson-Webb L. Does change in acetylcholine receptor antibody level correlate with clinical change in myasthenia gravis? Muscle Nerve. 2014;49(4):483–6. https://doi.org/10.1002/mus.23944.

    Article  CAS  PubMed  Google Scholar 

  29. •• Khan E, Shrestha AK, Elkhooly M, Wilson H, Ebbert M, Srivastava S, et al. CNS and PNS manifestation in immune checkpoint inhibitors: a systematic review. J Neurol Sci. 2022;432:120089. https://doi.org/10.1016/j.jns.2021.120089. A well-written, comprehensive review of nirAEs of ICIs.

    Article  CAS  PubMed  Google Scholar 

  30. Thomas R, Patel H, Scott J. Dermatomyositis flare with immune checkpoint inhibitor therapy for melanoma. Cureus. 2021;13(4):e14387. https://doi.org/10.7759/cureus.14387.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Manson G, Maria ATJ, Poizeau F, Danlos FX, Kostine M, Brosseau S, et al. Worsening and newly diagnosed paraneoplastic syndromes following anti-PD-1 or anti-PD-L1 immunotherapies, a descriptive study. J Immunother Cancer. 2019;7(1):337. https://doi.org/10.1186/s40425-019-0821-8.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Uchio N, Unuma A, Kakumoto T, Osaki M, Zenke Y, Sakuta K, et al. Pembrolizumab on pre-existing inclusion body myositis: a case report. BMC Rheumatol. 2020;4:48. https://doi.org/10.1186/s41927-020-00144-5.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Puwanant A, Isfort M, Lacomis D, Živković SA. Clinical spectrum of neuromuscular complications after immune checkpoint inhibition. Neuromuscul Disord. 2019;29(2):127–33. https://doi.org/10.1016/j.nmd.2018.11.012.

    Article  PubMed  Google Scholar 

  34. Wang C, Sandhu J, Fakih M. Complete response to pembrolizumab in a patient with metastatic colon cancer with microsatellite instability and a history of Guillain-Barre syndrome. J Gastrointest Oncol. 2019;10(1):161–5. https://doi.org/10.21037/jgo.2018.09.19.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cortellini A, Parisi A, Fargnoli MC, Cannita K, Irelli A, Porzio G, et al. Safe administration of ipilimumab, pembrolizumab, and nivolumab in a patient with metastatic melanoma, psoriasis, and a previous Guillain-Barré syndrome. Case Rep Oncol Med. 2018;2018:2783917. https://doi.org/10.1155/2018/2783917.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yuen C, Kamson D, Soliven B, Kramer C, Goldenberg F, Rezania K. Severe relapse of vaccine-induced Guillain-Barré syndrome after treatment with nivolumab. J Clin Neuromuscul Dis. 2019;20(4):194–9. https://doi.org/10.1097/cnd.0000000000000230.

    Article  PubMed  Google Scholar 

  37. Hughes RAC, Brassington R, Gunn AA, van Doorn PA. Corticosteroids for Guillain‐Barré syndrome. Cochrane Database Syst Rev. 2016(10). https://doi.org/10.1002/14651858.CD001446.pub5.

  38. Gettings EJ, Hackett CT, Scott TF. Severe relapse in a multiple sclerosis patient associated with ipilimumab treatment of melanoma. Mult Scler. 2015;21(5):670.

    Article  PubMed  Google Scholar 

  39. Garcia CR, et al. Multiple sclerosis outcomes after cancer immunotherapy. Clin Transl Oncol. 2019;21(10):1336–42.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gómez Vicente L, et al. P04.07 Relapse in a paucisymptomatic form of multiple sclerosis in a patient treated with nivolumab. 2016: Soc Neuro Oncol Annual Meeting.

  41. Gerdes LA, Held K, Beltrán E, Berking C, Prinz JC, Junker A, et al. CTLA4 as immunological checkpoint in the development of multiple sclerosis. Ann Neurol. 2016;80(2):294–300. https://doi.org/10.1002/ana.24715.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lu BY, et al. Intracranial complications from immune checkpoint therapy in a patient with NSCLC and multiple sclerosis: case report. JTO Clin Res Rep. 2021;2(6):100183.

    PubMed  PubMed Central  Google Scholar 

  43. Romeo MAL, Garassino MC, Moiola L, Galli G, Comi G, Martinelli V, et al. Multiple sclerosis associated with pembrolizumab in a patient with non-small cell lung cancer. J Neurol. 2019;266(12):3163–6. https://doi.org/10.1007/s00415-019-09562-z.

    Article  PubMed  Google Scholar 

  44. Kähler KC, Eigentler TK, Gesierich A, Heinzerling L, Loquai C, Meier F, et al. Ipilimumab in metastatic melanoma patients with pre-existing autoimmune disorders. Cancer Immunol Immunother. 2018;67(5):825–34. https://doi.org/10.1007/s00262-018-2134-z.

    Article  CAS  PubMed  Google Scholar 

  45. Kyi C, et al. Ipilimumab in patients with melanoma and autoimmune disease. J Immunother Cancer. 2014;2(1):35.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Neuzil K, et al. Complete pathologic response to pembrolizumab and axitinib in a patient with sarcomatoid RCC and ocrelizumab-treated multiple sclerosis. Urology. 2022;164:50–4.

    Article  PubMed  Google Scholar 

  47. Hasan Ali O, et al. Fingolimod and tumor-infiltrating lymphocytes in checkpoint-inhibitor treated cancer patients. Cancer Immunol Immunother. 2021;70(2):563–8.

    Article  CAS  PubMed  Google Scholar 

  48. Liu EK, Chen JJ, Braunstein S. Management of adverse radiation effect associated with stereotactic radiosurgery of brain metastasis in multiple sclerosis. Adv Radiat Oncol. 2023;8(2):101150. https://doi.org/10.1016/j.adro.2022.101150.

    Article  PubMed  Google Scholar 

  49. Barry B, Erwin AA, Stevens J, Tornatore C. Fingolimod rebound: a review of the clinical experience and management considerations. Neurol Ther. 2019;8(2):241–50. https://doi.org/10.1007/s40120-019-00160-9.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hatcher SE, Waubant E, Nourbakhsh B, Crabtree-Hartman E, Graves JS. Rebound syndrome in patients with multiple sclerosis after cessation of fingolimod treatment. JAMA Neurol. 2016;73(7):790–4. https://doi.org/10.1001/jamaneurol.2016.0826.

    Article  PubMed  Google Scholar 

  51. Gill A, Perez MA, Perrone CM, Bae CJ, Pruitt AA, Lancaster E. A case series of PD-1 inhibitor-associated paraneoplastic neurologic syndromes. J Neuroimmunol. 2019;334:576980. https://doi.org/10.1016/j.jneuroim.2019.576980.

    Article  CAS  PubMed  Google Scholar 

  52. Hottinger AF, de Micheli R, Guido V, Karampera A, Hagmann P, Du Pasquier R. Natalizumab may control immune checkpoint inhibitor-induced limbic encephalitis. Neurol Neuroimmunol Neuroinflamm. 2018;5(2):e439. https://doi.org/10.1212/NXI.0000000000000439.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Matsuoka H, Kimura H, Koba H, Tambo Y, Ohkura N, Hara J, et al. Nivolumab-induced limbic encephalitis with anti-Hu antibody in a patient with advanced pleomorphic carcinoma of the lung. Clin Lung Cancer. 2018;19(5):e597–9. https://doi.org/10.1016/j.cllc.2018.04.009.

    Article  PubMed  Google Scholar 

  54. Nasralla S, Abboud H. Is neuromyelitis optica without AQP4-IgG a T-cell mediated disease? Insights from checkpoint inhibitor immune-related adverse events. Mult Scler Relat Disord. 2020;46:102451. https://doi.org/10.1016/j.msard.2020.102451.

    Article  PubMed  Google Scholar 

  55. Papadopoulos KP, Romero RS, Gonzalez G, Dix JE, Lowy I, Fury M. Anti-Hu-associated autoimmune limbic encephalitis in a patient with PD-1 inhibitor-responsive myxoid chondrosarcoma. Oncologist. 2018;23(1):118–20. https://doi.org/10.1634/theoncologist.2017-0344.

    Article  PubMed  Google Scholar 

  56. Raibagkar P, Ho D, Gunturu KS, Srinivasan J. Worsening of anti-Hu paraneoplastic neurological syndrome related to anti-PD-1 treatment: case report and review of literature. J Neuroimmunol. 2020;341:577184. https://doi.org/10.1016/j.jneuroim.2020.577184.

    Article  CAS  PubMed  Google Scholar 

  57. Cao Y, Nylander A, Ramanan S, Goods BA, Ponath G, Zabad R, et al. CNS demyelination and enhanced myelin-reactive responses after ipilimumab treatment. Neurology. 2016;86(16):1553–6. https://doi.org/10.1212/WNL.0000000000002594.

    Article  PubMed  PubMed Central  Google Scholar 

  58. •• Oliveira MCB, de Brito MH, Simabukuro MM. Central nervous system demyelination associated with immune checkpoint inhibitors: review of the literature. Front Neurol. 2020;11:538695. https://doi.org/10.3389/fneur.2020.538695. The authors review rare cases of CNS demyelination that occurred on ICI therapy.

    Article  PubMed  PubMed Central  Google Scholar 

  59. •• Conway SE, Pua DKA, Holroyd KB, Galetta K, Bhattacharyya S. Neurologic disease activity in people with multiple sclerosis treated with immune checkpoint inhibitors. Mult Scler. 2023;29(3):471–4. https://doi.org/10.1177/13524585221117949. An important case series that suggests that ICI may be safe, from a neurologic standpoint, in older patients with stable MS.

    Article  CAS  PubMed  Google Scholar 

  60. Corboy JR, Fox RJ, Kister I, Cutter GR, Morgan CJ, Seale R, et al. Risk of new disease activity in patients with multiple sclerosis who continue or discontinue disease-modifying therapies (DISCOMS): a multicentre, randomised, single-blind, phase 4, non-inferiority trial. Lancet Neurol. 2023;22(7):568–77. https://doi.org/10.1016/S1474-4422(23)00154-0.

    Article  PubMed  Google Scholar 

  61. Sechi E, Markovic SN, McKeon A, Dubey D, Liewluck T, Lennon VA, et al. Neurologic autoimmunity and immune checkpoint inhibitors: autoantibody profiles and outcomes. Neurology. 2020;95(17):e2442–52. https://doi.org/10.1212/WNL.0000000000010632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Belkhir R, Burel SL, Dunogeant L, Marabelle A, Hollebecque A, Besse B, et al. Rheumatoid arthritis and polymyalgia rheumatica occurring after immune checkpoint inhibitor treatment. Ann Rheum Dis. 2017;76(10):1747–50. https://doi.org/10.1136/annrheumdis-2017-211216.

    Article  CAS  PubMed  Google Scholar 

  63. Kobayashi T, Iwama S, Yasuda Y, Okada N, Tsunekawa T, Onoue T, et al. Patients with antithyroid antibodies are prone to develop destructive thyroiditis by nivolumab: a prospective study. J Endocr Soc. 2018;2(3):241–51. https://doi.org/10.1210/js.2017-00432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Drs. Omar Hasan Ali, Massimo Filippi, Lisa Ann Gerdes, and Thomas Scott for providing us with additional data regarding their published cases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilya Kister.

Ethics declarations

Conflict of Interest

Raissa Aoun, Daniel Gratch, and David Kaminetzky each declare no potential conflicts of interest.

Ilya Kister served on advisory boards for Biogen, Genentech, Horizon and Alexion Pharmaceuticals, and received research support for investigator-initiated grants from Genentech, Sanofi Genzyme, Biogen, EMD Serono, National MS Society, and Guthy Jackson Charitable Foundation. He received royalties from Walters-Kluwer for “Top 100 Diagnosis in Neurology.”

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aoun, R., Gratch, D., Kaminetzky, D. et al. Immune Checkpoint Inhibitors in Patients with Pre-existing Neurologic Autoimmune Disorders. Curr Neurol Neurosci Rep 23, 735–750 (2023). https://doi.org/10.1007/s11910-023-01306-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-023-01306-x

Keywords

Navigation