We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

Advertisement

Log in

Developing Strategies to Improve the Efficacy of CAR-T Therapy for Acute Myeloid Leukemia

  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Acute myeloid leukemia (AML) is a fatal blood malignancy. With the development of immunotherapy, particularly chimeric antigen receptor T cells (CAR-T), the treatment of AML has undergone a significant change. Despite its advantages, CAR-T still faces a number of limitations and challenges while treating AML. Finding novel targets, altering the structure of CAR to increase efficacy while lowering side effects, and using double-target CAR and logic circuits are typical examples of key to answer these problems. With the advancement of gene editing technology, gene editing of tumor cells or normal cells to create therapeutic effects has grown in popularity. Additionally, the combination of multiple drugs is routinely used to address some of the obstacles and difficulties associated with CAR-T therapy. The review’s primary goal was to summarize recent strategies and developments of CAR-T therapy for AML.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

ALL:

Acute lymphoblastic leukemia

AML:

Acute myeloid leukemia

ASC:

Allogeneic stem cell

AZA:

Azacitidine

BM:

Bone morrow

BCMA:

B cell maturation antigen

CAR:

Chimeric antigen receptor

CCR:

Chimeric costimulatory receptor

CIK:

Cytokine-induced killer

CR:

Complete remission

CRS:

Cytokine release syndrome

CRTSPR-Cas9:

Clustered regularly interspaces short palindromic repeats and CRISPR associated protein 9

DAC:

Decitabine

DL:

Dose level

DLT:

Dose-limiting toxicities

DLBCL:

Diffuse large B cell lymphoma

GVHD:

Graft versus host disease

FAO:

Fatty acid oxidation

FRβ:

Folate receptor β

HDACi:

Histone deacetylase inhibitor

HER-2:

Human epidermal growth factor receptor 2

HIF-1α:

Hypoxia inducible factor-1α

IL:

Interleukin

LeY:

Lewis Y

LILRB4:

Leukocyte immunoglobulin-like receptor B4

MM:

Multiple myeloma

NKG2D:

Natural killer group 2 D

NR4A:

Nuclear receptor subfamily 4 group A

OTOT:

On-target, off-tumor toxicity

PD-1:

Programmed cell death protein-1

R/R(r/r):

Relapsed and/or refractory

Siglec-6:

Sialic acid-binding immunoglobulin-like lectin 6

TCR:

T cell receptor

TME:

Tumor microenvironment

TRAC:

T cell receptor alpha constant gene

VPA:

Valproic acid

WT1:

Wilms tumor 1

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hassan G, Seno M. Blood and cancer: cancer stem cells as origin of hematopoietic cells in solid tumor microenvironments. Cells. 2020;9(5). https://doi.org/10.3390/cells9051293.

  2. Newell LF, Cook RJ. Advances in acute myeloid leukemia BMJ. 2021;375:n2026. https://doi.org/10.1136/bmj.n2026.

    Article  PubMed  Google Scholar 

  3. Mo JS, Park HW, Guan KL. The Hippo signaling pathway in stem cell biology and cancer. EMBO Rep. 2014;15(6):642–56. https://doi.org/10.15252/embr.201438638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bishop MR, Maziarz RT, Waller EK, Jäger U, Westin JR, McGuirk JP, Fleury I, Holte H, Borchmann P, Del Corral C, et al. Tisagenlecleucel in relapsed/refractory diffuse large B-cell lymphoma patients without measurable disease at infusion. Blood Adv. 2019;3(14):2230–6. https://doi.org/10.1182/bloodadvances.2019000151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. June CH, Sadelain M. Chimeric Antigen receptor therapy. N Engl J Med. 2018;379(1):64–73. https://doi.org/10.1056/NEJMra1706169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Maus MV, Levine BL. Chimeric antigen receptor T-cell therapy for the community oncologist. Oncologist. 2016;21(5):608–17. https://doi.org/10.1634/theoncologist.2015-0421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brudno JN, Kochenderfer JN. Recent advances in CAR T-cell toxicity: mechanisms, manifestations and management. Blood Rev. 2019;34:45–55. https://doi.org/10.1016/j.blre.2018.11.002.

    Article  CAS  PubMed  Google Scholar 

  8. Jin X, Zhang M, Sun R, Lyu H, Xiao X, Zhang X, Li F, Xie D, Xiong X, Wang J, et al. First-in-human phase I study of CLL-1 CAR-T cells in adults with relapsed/refractory acute myeloid leukemia. J Hematol Oncol. 2022;15(1):88. https://doi.org/10.1186/s13045-022-01308-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tabata R, Chi S, Yuda J, Minami Y. Emerging immunotherapy for acute myeloid leukemia. Int J Mol Sci 2021;22(4). https://doi.org/10.3390/ijms22041944.

  10. Marofi F, Rahman HS, Al-Obaidi ZMJ, Jalil AT, Abdelbasset WK, Suksatan W, Dorofeev AE, Shomali N, Chartrand MS, Pathak Y, et al. Novel CAR T therapy is a ray of hope in the treatment of seriously ill AML patients. Stem Cell Res Ther. 2021;12(1):465. https://doi.org/10.1186/s13287-021-02420-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sauer T, Parikh K, Sharma S, Omer B, Sedloev D, Chen Q, Angenendt L, Schliemann C, Schmitt M, Müller-Tidow C, et al. CD70-specific CAR T cells have potent activity against acute myeloid leukemia without HSC toxicity. Blood. 2021;138(4):318–30. https://doi.org/10.1182/blood.2020008221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Papalexi E, Satija R. Single-cell RNA sequencing to explore immune cell heterogeneity. Nat Rev Immunol. 2018;18(1):35–45. https://doi.org/10.1038/nri.2017.76.

    Article  CAS  PubMed  Google Scholar 

  13. • Gottschlich A, Thomas M, Grünmeier R, Lesch S, Rohrbacher L, Igl V, Briukhovetska D, Benmebarek MR, Vick B, Dede S, et al. Single-cell transcriptomic atlas-guided development of CAR-T cells for the treatment of acute myeloid leukemia. Nat Biotechnol. 2023. https://doi.org/10.1038/s41587-023-01684-0. An novel and systematic method (single-cell transcription) was used and reported to select adapt antigens of AML.

  14. Hebbar N, Epperly R, Vaidya A, Thanekar U, Moore SE, Umeda M, Ma J, Patil SL, Langfitt D, Huang S, et al. CAR T cells redirected to cell surface GRP78 display robust anti-acute myeloid leukemia activity and do not target hematopoietic progenitor cells. Nat Commun. 2022;13(1):587. https://doi.org/10.1038/s41467-022-28243-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gumber D, Wang LD. Improving CAR-T immunotherapy: overcoming the challenges of T cell exhaustion. EBioMedicine. 2022;77:103941. https://doi.org/10.1016/j.ebiom.2022.103941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Trad R, Warda W, Alcazer V, Neto da Rocha M, Berceanu A, Nicod C, Haderbache R, Roussel X, Desbrosses Y, Daguindau E, et al. Chimeric antigen receptor T-cells targeting IL-1RAP: a promising new cellular immunotherapy to treat acute myeloid leukemia. J Immunother Cancer. 2022;10(7). https://doi.org/10.1136/jitc-2021-004222.

  17. Li Z, Deng M, Huang F, Jin C, Sun S, Chen H, Liu X, He L, Sadek AH, Zhang CC. LILRB4 ITIMs mediate the T cell suppression and infiltration of acute myeloid leukemia cells. Cell Mol Immunol. 2020;17(3):272–82. https://doi.org/10.1038/s41423-019-0321-2.

    Article  CAS  PubMed  Google Scholar 

  18. Deng M, Gui X, Kim J, Xie L, Chen W, Li Z, He L, Chen Y, Chen H, Luo W, et al. LILRB4 signalling in leukaemia cells mediates T cell suppression and tumour infiltration. Nature. 2018;562(7728):605–9. https://doi.org/10.1038/s41586-018-0615-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. John S, Chen H, Deng M, Gui X, Wu G, Chen W, Li Z, Zhang N, An Z, Zhang CC. A novel anti-LILRB4 CAR-T cell for the treatment of monocytic AML. Mol Ther. 2018;26(10):2487–95. https://doi.org/10.1016/j.ymthe.2018.08.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lemoine J, Ruella M, Houot R. Born to survive: how cancer cells resist CAR T cell therapy. J Hematol Oncol. 2021;14(1):199. https://doi.org/10.1186/s13045-021-01209-9.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Daver N, Alotaibi AS, Bücklein V, Subklewe M. T-cell-based immunotherapy of acute myeloid leukemia: current concepts and future developments. Leukemia. 2021;35(7):1843–63. https://doi.org/10.1038/s41375-021-01253-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xie B, Li Z, Zhou J, Wang W. Current status and perspectives of dual-targeting chimeric antigen receptor T-cell therapy for the treatment of hematological malignancies. Cancers (Basel) 2022;14(13). https://doi.org/10.3390/cancers14133230.

  23. Mei H, Li C, Jiang H, Zhao X, Huang Z, Jin D, Guo T, Kou H, Liu L, Tang L, et al. A bispecific CAR-T cell therapy targeting BCMA and CD38 in relapsed or refractory multiple myeloma. J Hematol Oncol. 2021;14(1):161. https://doi.org/10.1186/s13045-021-01170-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang Y, Yang Y, Hong R, Zhao H, Wei G, Wu W, Xu H, Cui J, Zhang Y, Chang AH, et al. A retrospective comparison of CD19 single and CD19/CD22 bispecific targeted chimeric antigen receptor T cell therapy in patients with relapsed/refractory acute lymphoblastic leukemia. Blood Cancer J. 2020;10(10):105. https://doi.org/10.1038/s41408-020-00371-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tong C, Zhang Y, Liu Y, Ji X, Zhang W, Guo Y, Han X, Ti D, Dai H, Wang C, et al. Optimized tandem CD19/CD20 CAR-engineered T cells in refractory/relapsed B-cell lymphoma. Blood. 2020;136(14):1632–44. https://doi.org/10.1182/blood.2020005278.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Shah NN, Johnson BD, Schneider D, Zhu F, Szabo A, Keever-Taylor CA, Krueger W, Worden AA, Kadan MJ, Yim S, et al. Bispecific anti-CD20, anti-CD19 CAR T cells for relapsed B cell malignancies: a phase 1 dose escalation and expansion trial. Nat Med. 2020;26(10):1569–75. https://doi.org/10.1038/s41591-020-1081-3.

    Article  CAS  PubMed  Google Scholar 

  27. Dai H, Wu Z, Jia H, Tong C, Guo Y, Ti D, Han X, Liu Y, Zhang W, Wang C, et al. Bispecific CAR-T cells targeting both CD19 and CD22 for therapy of adults with relapsed or refractory B cell acute lymphoblastic leukemia. J Hematol Oncol. 2020;13(1):30. https://doi.org/10.1186/s13045-020-00856-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu F, Cao Y, Pinz K, Ma Y, Wada M, Chen K, Ma G, Shen J, Tse CO, Su Y. First-in-human CLL1-CD33 compound CAR T cell therapy induces complete remission in patients with refractory acute myeloid leukemia: update on phase 1 clinical trial. Blood. 2018;132:901.

    Article  Google Scholar 

  29. Antar AI, Otrock ZK, Jabbour E, Mohty M, Bazarbachi A. FLT3 inhibitors in acute myeloid leukemia: ten frequently asked questions. Leukemia. 2020;34(3):682–96. https://doi.org/10.1038/s41375-019-0694-3.

    Article  PubMed  Google Scholar 

  30. Li KX, Wu HY, Pan WY, Guo MQ, Qiu DZ, He YJ, Li YH, Yang DH, Huang YX. A novel approach for relapsed/refractory FLT3(mut+) acute myeloid leukaemia: synergistic effect of the combination of bispecific FLT3scFv/NKG2D-CAR T cells and gilteritinib. Mol Cancer. 2022;21(1):66. https://doi.org/10.1186/s12943-022-01541-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Di Stasi A, Tey SK, Dotti G, Fujita Y, Kennedy-Nasser A, Martinez C, Straathof K, Liu E, Durett AG, Grilley B, et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med. 2011;365(18):1673–83. https://doi.org/10.1056/NEJMoa1106152.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Tiberghien P, Ferrand C, Lioure B, Milpied N, Angonin R, Deconinck E, Certoux JM, Robinet E, Saas P, Petracca B, et al. Administration of herpes simplex-thymidine kinase-expressing donor T cells with a T-cell-depleted allogeneic marrow graft. Blood. 2001;97(1):63–72. https://doi.org/10.1182/blood.v97.1.63.

    Article  CAS  PubMed  Google Scholar 

  33. Agliardi G, Liuzzi AR, Hotblack A, De Feo D, Núñez N, Stowe CL, Friebel E, Nannini F, Rindlisbacher L, Roberts TA, et al. Intratumoral IL-12 delivery empowers CAR-T cell immunotherapy in a pre-clinical model of glioblastoma. Nat Commun. 2021;12(1):444. https://doi.org/10.1038/s41467-020-20599-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang H, Savage S, Schultz AR, Bottomly D, White L, Segerdell E, Wilmot B, McWeeney SK, Eide CA, Nechiporuk T, et al. Clinical resistance to crenolanib in acute myeloid leukemia due to diverse molecular mechanisms. Nat Commun. 2019;10(1):244. https://doi.org/10.1038/s41467-018-08263-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ruella M, Maus MV. Catch me if you can: leukemia escape after CD19-directed T cell immunotherapies. Comput Struct Biotechnol J. 2016;14:357–62. https://doi.org/10.1016/j.csbj.2016.09.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Maude SL, Barrett D, Teachey DT, Grupp SA. Managing cytokine release syndrome associated with novel T cell-engaging therapies. Cancer J. 2014;20(2):119–22. https://doi.org/10.1097/ppo.0000000000000035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Perez K, Walsh R, Brilliant K, Noble L, Yakirevich E, Breese V, Jackson C, Chatterjee D, Pricolo V, Roth L, et al. Heterogeneity of colorectal cancer (CRC) in reference to KRAS proto-oncogene utilizing WAVE technology. Exp Mol Pathol. 2013;95(1):74–82. https://doi.org/10.1016/j.yexmp.2013.01.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Flugel CL, Majzner RG, Krenciute G, Dotti G, Riddell SR, Wagner DL, Abou-El-Enein M. Overcoming on-target, off-tumour toxicity of CAR T cell therapy for solid tumours. Nat Rev Clin Oncol. 2023;20(1):49–62. https://doi.org/10.1038/s41571-022-00704-3.

    Article  CAS  PubMed  Google Scholar 

  39. Depil S, Duchateau P, Grupp SA, Mufti G, Poirot L. ‘Off-the-shelf’ allogeneic CAR T cells: development and challenges. Nat Rev Drug Discov. 2020;19(3):185–99. https://doi.org/10.1038/s41573-019-0051-2.

    Article  CAS  PubMed  Google Scholar 

  40. Liu Y, Liu G, Wang J, Zheng ZY, Jia L, Rui W, Huang D, Zhou ZX, Zhou L, Wu X, et al. Chimeric STAR receptors using TCR machinery mediate robust responses against solid tumors. Sci Transl Med. 2021;13(586). https://doi.org/10.1126/scitranslmed.abb5191.

  41. Wilkie S, van Schalkwyk MC, Hobbs S, Davies DM, van der Stegen SJ, Pereira AC, Burbridge SE, Box C, Eccles SA, Maher J. Dual targeting of ErbB2 and MUC1 in breast cancer using chimeric antigen receptors engineered to provide complementary signaling. J Clin Immunol. 2012;32(5):1059–70. https://doi.org/10.1007/s10875-012-9689-9.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang E, Yang P, Gu J, Wu H, Chi X, Liu C, Wang Y, Xue J, Qi W, Sun Q, et al. Recombination of a dual-CAR-modified T lymphocyte to accurately eliminate pancreatic malignancy. J Hematol Oncol. 2018;11(1):102. https://doi.org/10.1186/s13045-018-0646-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vaupel P, Multhoff G. Revisiting the Warburg effect: historical dogma versus current understanding. J Physiol. 2021;599(6):1745–57. https://doi.org/10.1113/jp278810.

    Article  CAS  PubMed  Google Scholar 

  44. Tabe Y, Yamamoto S, Saitoh K, Sekihara K, Monma N, Ikeo K, Mogushi K, Shikami M, Ruvolo V, Ishizawa J, et al. Bone marrow adipocytes facilitate fatty acid oxidation activating AMPK and a transcriptional network supporting survival of acute monocytic leukemia cells. Cancer Res. 2017;77(6):1453–64. https://doi.org/10.1158/0008-5472.Can-16-1645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shafat MS, Oellerich T, Mohr S, Robinson SD, Edwards DR, Marlein CR, Piddock RE, Fenech M, Zaitseva L, Abdul-Aziz A, et al. Leukemic blasts program bone marrow adipocytes to generate a protumoral microenvironment. Blood. 2017;129(10):1320–32. https://doi.org/10.1182/blood-2016-08-734798.

    Article  CAS  PubMed  Google Scholar 

  46. Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, MacIver NJ, Mason EF, Sullivan SA, Nichols AG, Rathmell JC. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol. 2011;186(6):3299–303. https://doi.org/10.4049/jimmunol.1003613.

    Article  CAS  PubMed  Google Scholar 

  47. Rohner A, Langenkamp U, Siegler U, Kalberer CP, Wodnar-Filipowicz A. Differentiation-promoting drugs up-regulate NKG2D ligand expression and enhance the susceptibility of acute myeloid leukemia cells to natural killer cell-mediated lysis. Leuk Res. 2007;31(10):1393–402. https://doi.org/10.1016/j.leukres.2007.02.020.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang W, He Q, Lopez B, Hu J, Kundu A, Andraza MC, Kerner AR, Schreiber GH, Shepard HM, Frost GI. Abstract PO074: logic-gating HER2 CAR-T to the tumor microenvironment mitigates on-target, off-tumor toxicity without compromising cytotoxicity against HER2-over-expressing tumors. Cancer Immunol Res. 2021;9(2_Supplement):PO074–PO074.

    Article  Google Scholar 

  49. Juillerat A, Marechal A, Filhol JM, Valogne Y, Valton J, Duclert A, Duchateau P, Poirot L. An oxygen sensitive self-decision making engineered CAR T-cell. Sci Rep. 2017;7:39833. https://doi.org/10.1038/srep39833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dumas SJ, Meta E, Borri M, Luo Y, Li X, Rabelink TJ, Carmeliet P. Phenotypic diversity and metabolic specialization of renal endothelial cells. Nat Rev Nephrol. 2021;17(7):441–64. https://doi.org/10.1038/s41581-021-00411-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Han X, Bryson PD, Zhao Y, Cinay GE, Li S, Guo Y, Siriwon N, Wang P. Masked chimeric antigen receptor for tumor-specific activation. Mol Ther. 2017;25(1):274–84. https://doi.org/10.1016/j.ymthe.2016.10.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang JL, Morrell G, Rusinek H, Warner L, Vivier PH, Cheung AK, Lerman LO, Lee VS. Measurement of renal tissue oxygenation with blood oxygen level-dependent MRI and oxygen transit modeling. Am J Physiol Renal Physiol. 2014;306(6):F579-587. https://doi.org/10.1152/ajprenal.00575.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Richards RM, Zhao F, Freitas KA, Parker KR, Xu P, Fan A, Sotillo E, Daugaard M, Oo HZ, Liu J, et al. NOT-gated CD93 CAR T cells effectively target AML with minimized endothelial cross-reactivity. Blood Cancer Discov. 2021;2(6):648–65. https://doi.org/10.1158/2643-3230.Bcd-20-0208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fedorov VD, Themeli M, Sadelain M. PD-1- and CTLA-4-based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Sci Transl Med. 2013;5(215):215ra172. https://doi.org/10.1126/scitranslmed.3006597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. He X, Feng Z, Ma J, Ling S, Cao Y, Gurung B, Wu Y, Katona BW, O’Dwyer KP, Siegel DL, et al. Bispecific and split CAR T cells targeting CD13 and TIM3 eradicate acute myeloid leukemia. Blood. 2020;135(10):713–23. https://doi.org/10.1182/blood.2019002779.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Purbhoo MA, Irvine DJ, Huppa JB, Davis MM. T cell killing does not require the formation of a stable mature immunological synapse. Nat Immunol. 2004;5(5):524–30. https://doi.org/10.1038/ni1058.

    Article  CAS  PubMed  Google Scholar 

  57. Sykulev Y, Joo M, Vturina I, Tsomides TJ, Eisen HN. Evidence that a single peptide-MHC complex on a target cell can elicit a cytolytic T cell response. Immunity. 1996;4(6):565–71. https://doi.org/10.1016/s1074-7613(00)80483-5.

    Article  CAS  PubMed  Google Scholar 

  58. Mansilla-Soto J, Eyquem J, Haubner S, Hamieh M, Feucht J, Paillon N, Zucchetti AE, Li Z, Sjöstrand M, Lindenbergh PL, et al. HLA-independent T cell receptors for targeting tumors with low antigen density. Nat Med. 2022;28(2):345–52. https://doi.org/10.1038/s41591-021-01621-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Baeuerle PA, Ding J, Patel E, Thorausch N, Horton H, Gierut J, Scarfo I, Choudhary R, Kiner O, Krishnamurthy J, et al. Synthetic TRuC receptors engaging the complete T cell receptor for potent anti-tumor response. Nat Commun. 2019;10(1):2087. https://doi.org/10.1038/s41467-019-10097-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Xu Y, Yang Z, Horan LH, Zhang P, Liu L, Zimdahl B, Green S, Lu J, Morales JF, Barrett DM, et al. A novel antibody-TCR (AbTCR) platform combines Fab-based antigen recognition with gamma/delta-TCR signaling to facilitate T-cell cytotoxicity with low cytokine release. Cell Discov. 2018;4:62. https://doi.org/10.1038/s41421-018-0066-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Helsen CW, Hammill JA, Lau VWC, Mwawasi KA, Afsahi A, Bezverbnaya K, Newhook L, Hayes DL, Aarts C, Bojovic B, et al. The chimeric TAC receptor co-opts the T cell receptor yielding robust anti-tumor activity without toxicity. Nat Commun. 2018;9(1):3049. https://doi.org/10.1038/s41467-018-05395-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Naik J, Themeli M, de Jong-Korlaar R, Ruiter RWJ, Poddighe PJ, Yuan H, de Bruijn JD, Ossenkoppele GJ, Zweegman S, Smit L, et al. CD38 as a therapeutic target for adult acute myeloid leukemia and T-cell acute lymphoblastic leukemia. Haematologica. 2019;104(3):e100–3. https://doi.org/10.3324/haematol.2018.192757.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Krejcik J, Casneuf T, Nijhof IS, Verbist B, Bald J, Plesner T, Syed K, Liu K, van de Donk NW, Weiss BM, et al. Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma. Blood. 2016;128(3):384–94. https://doi.org/10.1182/blood-2015-12-687749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. •• Amini L, Silbert SK, Maude SL, Nastoupil LJ, Ramos CA, Brentjens RJ, Sauter CS, Shah NN, Abou-El-Enein M. Preparing for CAR T cell therapy: patient selection, bridging therapies and lymphodepletion. Nat Rev Clin Oncol. 2022;19(5):342–355. https://doi.org/10.1038/s41571-022-00607-3. Providing a systematical review of the current limitations and an outlook of CAR-T therapy.

  65. Katsarou A, Sjöstrand M, Naik J, Mansilla-Soto J, Kefala D, Kladis G, Nianias A, Ruiter R, Poels R, Sarkar I, et al. Combining a CAR and a chimeric costimulatory receptor enhances T cell sensitivity to low antigen density and promotes persistence. Sci Transl Med. 2021;13(623):eabh1962. https://doi.org/10.1126/scitranslmed.abh1962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Park JH, Rivière I, Gonen M, Wang X, Sénéchal B, Curran KJ, Sauter C, Wang Y, Santomasso B, Mead E, et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med. 2018;378(5):449–59. https://doi.org/10.1056/NEJMoa1709919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Turtle CJ, Hanafi LA, Berger C, Gooley TA, Cherian S, Hudecek M, Sommermeyer D, Melville K, Pender B, Budiarto TM, et al. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J Clin Invest. 2016;126(6):2123–38. https://doi.org/10.1172/jci85309.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, Fry TJ, Orentas R, Sabatino M, Shah NN, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015;385(9967):517–28. https://doi.org/10.1016/s0140-6736(14)61403-3.

    Article  CAS  PubMed  Google Scholar 

  69. Fraietta JA, Lacey SF, Orlando EJ, Pruteanu-Malinici I, Gohil M, Lundh S, Boesteanu AC, Wang Y, O’Connor RS, Hwang WT, et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat Med. 2018;24(5):563–71. https://doi.org/10.1038/s41591-018-0010-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Porter DL, Hwang WT, Frey NV, Lacey SF, Shaw PA, Loren AW, Bagg A, Marcucci KT, Shen A, Gonzalez V, et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med. 2015;7(303):303ra139. https://doi.org/10.1126/scitranslmed.aac5415.

    Article  PubMed  PubMed Central  Google Scholar 

  71. •• Tettamanti S, Pievani A, Biondi A, Dotti G, Serafini M. Catch me if you can: how AML and its niche escape immunotherapy. Leukemia. 2022;36(1):13–22. https://doi.org/10.1038/s41375-021-01350-x. The mechanism of immune escape in the treatment of AML was elucidated which is meaningful(for the innovation and exploration in the area of treating AML.)

  72. Turner JA, Stephen-Victor E, Wang S, Rivas MN, Abdel-Gadir A, Harb H, Cui Y, Fanny M, Charbonnier LM, Fong JJH, et al. Regulatory T cell-derived TGF-β1 controls multiple checkpoints governing allergy and autoimmunity. Immunity. 2020;53(6):1202-1214.e1206. https://doi.org/10.1016/j.immuni.2020.10.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mansour I, Zayed RA, Said F, Latif LA. Indoleamine 2,3-dioxygenase and regulatory T cells in acute myeloid leukemia. Hematology. 2016;21(8):447–53. https://doi.org/10.1080/10245332.2015.1106814.

    Article  CAS  PubMed  Google Scholar 

  74. Lu Y, Liu J, Liu Y, Qin Y, Luo Q, Wang Q, Duan H. TLR4 plays a crucial role in MSC-induced inhibition of NK cell function. Biochem Biophys Res Commun. 2015;464(2):541–7. https://doi.org/10.1016/j.bbrc.2015.07.002.

    Article  CAS  PubMed  Google Scholar 

  75. Dimitri A, Herbst F, Fraietta JA. Engineering the next-generation of CAR T-cells with CRISPR-Cas9 gene editing. Mol Cancer. 2022;21(1):78. https://doi.org/10.1186/s12943-022-01559-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mali P, Esvelt KM, Church GM. Cas9 as a versatile tool for engineering biology. Nat Methods. 2013;10(10):957–63. https://doi.org/10.1038/nmeth.2649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Liang C, Huang S, Zhao Y, Chen S, Li Y. TOX as a potential target for immunotherapy in lymphocytic malignancies. Biomark Res. 2021;9(1):20. https://doi.org/10.1186/s40364-021-00275-y.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Jiang W, He Y, He W, Wu G, Zhou X, Sheng Q, Zhong W, Lu Y, Ding Y, Lu Q, et al. Exhausted CD8+T cells in the tumor immune microenvironment: new pathways to therapy. Front Immunol. 2020;11:622509. https://doi.org/10.3389/fimmu.2020.622509.

    Article  CAS  PubMed  Google Scholar 

  79. Lynn RC, Weber EW, Sotillo E, Gennert D, Xu P, Good Z, Anbunathan H, Lattin J, Jones R, Tieu V, et al. c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature. 2019;576(7786):293–300. https://doi.org/10.1038/s41586-019-1805-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chen J, López-Moyado IF, Seo H, Lio CJ, Hempleman LJ, Sekiya T, Yoshimura A, Scott-Browne JP, Rao A. NR4A transcription factors limit CAR T cell function in solid tumours. Nature. 2019;567(7749):530–4. https://doi.org/10.1038/s41586-019-0985-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kawalekar OU, O’Connor RS, Fraietta JA, Guo L, McGettigan SE, Posey AD Jr, Patel PR, Guedan S, Scholler J, Keith B, et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity. 2016;44(2):380–90. https://doi.org/10.1016/j.immuni.2016.01.021.

    Article  CAS  PubMed  Google Scholar 

  82. Long AH, Haso WM, Shern JF, Wanhainen KM, Murgai M, Ingaramo M, Smith JP, Walker AJ, Kohler ME, Venkateshwara VR, et al. 4–1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med. 2015;21(6):581–90. https://doi.org/10.1038/nm.3838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhang W, Shi L, Zhao Z, Du P, Ye X, Li D, Cai Z, Han J, Cai J. Disruption of CTLA-4 expression on peripheral blood CD8 + T cell enhances anti-tumor efficacy in bladder cancer. Cancer Chemother Pharmacol. 2019;83(5):911–20. https://doi.org/10.1007/s00280-019-03800-x.

    Article  CAS  PubMed  Google Scholar 

  84. Zhang Y, Zhang X, Cheng C, Mu W, Liu X, Li N, Wei X, Liu X, Xia C, Wang H. CRISPR-Cas9 mediated LAG-3 disruption in CAR-T cells. Front Med. 2017;11(4):554–62. https://doi.org/10.1007/s11684-017-0543-6.

    Article  PubMed  Google Scholar 

  85. Ren J, Liu X, Fang C, Jiang S, June CH, Zhao Y. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin Cancer Res. 2017;23(9):2255–66. https://doi.org/10.1158/1078-0432.Ccr-16-1300.

    Article  CAS  PubMed  Google Scholar 

  86. Sterner RM, Sakemura R, Cox MJ, Yang N, Khadka RH, Forsman CL, Hansen MJ, Jin F, Ayasoufi K, Hefazi M, et al. GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts. Blood. 2019;133(7):697–709. https://doi.org/10.1182/blood-2018-10-881722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Odé Z, Condori J, Peterson N, Zhou S, Krenciute G. CRISPR-mediated non-viral site-specific gene integration and expression in T cells: protocol and application for T-cell therapy. Cancers (Basel) 2020;12(6). https://doi.org/10.3390/cancers12061704.

  88. Spoo AC, Lübbert M, Wierda WG, Burger JA. CXCR4 is a prognostic marker in acute myelogenous leukemia. Blood. 2007;109(2):786–91. https://doi.org/10.1182/blood-2006-05-024844.

    Article  CAS  PubMed  Google Scholar 

  89. Rees HA, Liu DR. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet. 2018;19(12):770–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR. Programmable base editing of A• T to G• C in genomic DNA without DNA cleavage. Nature. 2017;551(7681):464–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533(7603):420–4. https://doi.org/10.1038/nature17946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gaudelli NM, Lam DK, Rees HA, Solá-Esteves NM, Barrera LA, Born DA, Edwards A, Gehrke JM, Lee SJ, Liquori AJ, et al. Directed evolution of adenine base editors with increased activity and therapeutic application. Nat Biotechnol. 2020;38(7):892–900. https://doi.org/10.1038/s41587-020-0491-6.

    Article  CAS  PubMed  Google Scholar 

  93. Mamonkin M, Rouce RH, Tashiro H, Brenner MK. A T-cell-directed chimeric antigen receptor for the selective treatment of T-cell malignancies. Blood. 2015;126(8):983–92. https://doi.org/10.1182/blood-2015-02-629527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Diorio C, Murray R, Naniong M, Barrera L, Camblin A, Chukinas J, Coholan L, Edwards A, Fuller T, Gonzales C, et al. Cytosine base editing enables quadruple-edited allogeneic CART cells for T-ALL. Blood. 2022;140(6):619–29. https://doi.org/10.1182/blood.2022015825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Haber AL, Biton M, Rogel N, Herbst RH, Shekhar K, Smillie C, Burgin G, Delorey TM, Howitt MR, Katz Y, et al. A single-cell survey of the small intestinal epithelium. Nature. 2017;551(7680):333–9. https://doi.org/10.1038/nature24489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Pietrobon V, Todd LA, Goswami A, Stefanson O, Yang Z, Marincola F. Improving CAR T-cell persistence. Int J Mol Sci. 2021;22(19). https://doi.org/10.3390/ijms221910828.

  97. Chen C, Liang C, Wang S, Chio CL, Zhang Y, Zeng C, Chen S, Wang C, Li Y. Expression patterns of immune checkpoints in acute myeloid leukemia. J Hematol Oncol. 2020;13(1):28. https://doi.org/10.1186/s13045-020-00853-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Rotiroti MC, Buracchi C, Arcangeli S, Galimberti S, Valsecchi MG, Perriello VM, Rasko T, Alberti G, Magnani CF, Cappuzzello C, et al. Targeting CD33 in chemoresistant AML patient-derived xenografts by CAR-CIK cells modified with an improved SB transposon system. Mol Ther. 2020;28(9):1974–86. https://doi.org/10.1016/j.ymthe.2020.05.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kenderian SS, Ruella M, Shestova O, Klichinsky M, Kim MY, Porter DL, June CH, Gill SI. Identification of PD1 and TIM3 as checkpoints that limit chimeric antigen receptor T cell efficacy in leukemia. Blood. 2015;126(23):852.

    Article  Google Scholar 

  100. Weber EW, Lynn RC, Sotillo E, Lattin J, Xu P, Mackall CL. Pharmacologic control of CAR-T cell function using dasatinib. Blood Adv. 2019;3(5):711–7. https://doi.org/10.1182/bloodadvances.2018028720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mestermann K, Giavridis T, Weber J, Rydzek J, Frenz S, Nerreter T, Mades A, Sadelain M, Einsele H, Hudecek M. The tyrosine kinase inhibitor dasatinib acts as a pharmacologic on/off switch for CAR T cells. Sci Transl Med 2019;11(499). https://doi.org/10.1126/scitranslmed.aau5907.

  102. Zhang H, Hu Y, Shao M, Teng X, Jiang P, Wang X, Wang H, Cui J, Yu J, Liang Z, et al. Dasatinib enhances anti-leukemia efficacy of chimeric antigen receptor T cells by inhibiting cell differentiation and exhaustion. J Hematol Oncol. 2021;14(1):113. https://doi.org/10.1186/s13045-021-01117-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Nian Z, Zheng X, Dou Y, Du X, Zhou L, Fu B, Sun R, Tian Z, Wei H. Rapamycin pretreatment rescues the bone marrow AML cell elimination capacity of CAR-T cells. Clin Cancer Res. 2021;27(21):6026–38. https://doi.org/10.1158/1078-0432.Ccr-21-0452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Leclercq G, Haegel H, Toso A, Zimmermann T, Green L, Steinhoff N, Sam J, Pulko V, Schneider A, Giusti AM, et al. JAK and mTOR inhibitors prevent cytokine release while retaining T cell bispecific antibody in vivo efficacy. J Immunother Cancer. 2022;10(1). https://doi.org/10.1136/jitc-2021-003766.

  105. Funk CR, Wang S, Chen KZ, Waller A, Sharma A, Edgar CL, Gupta VA, Chandrakasan S, Zoine JT, Fedanov A, et al. PI3Kδ/γ inhibition promotes human CART cell epigenetic and metabolic reprogramming to enhance antitumor cytotoxicity. Blood. 2022;139(4):523–37. https://doi.org/10.1182/blood.2021011597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Esfahani K, Al-Aubodah TA, Thebault P, Lapointe R, Hudson M, Johnson NA, Baran D, Bhulaiga N, Takano T, Cailhier JF, et al. Targeting the mTOR pathway uncouples the efficacy and toxicity of PD-1 blockade in renal transplantation. Nat Commun. 2019;10(1):4712. https://doi.org/10.1038/s41467-019-12628-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Huye LE, Nakazawa Y, Patel MP, Yvon E, Sun J, Savoldo B, Wilson MH, Dotti G, Rooney CM. Combining mTor inhibitors with rapamycin-resistant T cells: a two-pronged approach to tumor elimination. Mol Ther. 2011;19(12):2239–48. https://doi.org/10.1038/mt.2011.179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ghoneim HE, Fan Y, Moustaki A, Abdelsamed HA, Dash P, Dogra P, Carter R, Awad W, Neale G, Thomas PG, et al. De novo epigenetic programs inhibit PD-1 blockade-mediated T cell rejuvenation. Cell. 2017;170(1):142-157.e119. https://doi.org/10.1016/j.cell.2017.06.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Finelli C, Follo MY, Stanzani M, Parisi S, Clissa C, Mongiorgi S, Barraco M, Cocco L. Clinical impact of hypomethylating agents in the treatment of myelodysplastic syndromes. Curr Pharm Des. 2016;22(16):2349–57. https://doi.org/10.2174/1381612822666160310145040.

    Article  CAS  PubMed  Google Scholar 

  110. Daniel FI, Cherubini K, Yurgel LS, de Figueiredo MA, Salum FG. The role of epigenetic transcription repression and DNA methyltransferases in cancer. Cancer. 2011;117(4):677–87. https://doi.org/10.1002/cncr.25482.

    Article  CAS  PubMed  Google Scholar 

  111. El Khawanky N, Hughes A, Yu W, Myburgh R, Matschulla T, Taromi S, Aumann K, Clarson J, Vinnakota JM, Shoumariyeh K, et al. Demethylating therapy increases anti-CD123 CAR T cell cytotoxicity against acute myeloid leukemia. Nat Commun. 2021;12(1):6436. https://doi.org/10.1038/s41467-021-26683-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Leick MB, Silva H, Scarfò I, Larson R, Choi BD, Bouffard AA, Gallagher K, Schmidts A, Bailey SR, Kann MC, et al. Non-cleavable hinge enhances avidity and expansion of CAR-T cells for acute myeloid leukemia. Cancer Cell. 2022;40(5):494-508.e495. https://doi.org/10.1016/j.ccell.2022.04.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Dougan M, Dranoff G. Immune therapy for cancer. Annu Rev Immunol. 2009;27:83–117. https://doi.org/10.1146/annurev.immunol.021908.132544.

    Article  CAS  PubMed  Google Scholar 

  114. Cao X, Jin X, Zhang X, Utsav P, Zhang Y, Guo R, Lu W, Zhao M. Small-molecule compounds boost CAR-T cell therapy in hematological malignancies. Curr Treat Options Oncol. 2023;24(3):184–211. https://doi.org/10.1007/s11864-023-01049-4.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Jetani H, Navarro-Bailón A, Maucher M, Frenz S, Verbruggen C, Yeguas A, Vidriales MB, González M, Rial Saborido J, Kraus S, et al. Siglec-6 is a novel target for CAR T-cell therapy in acute myeloid leukemia. Blood. 2021;138(19):1830–42. https://doi.org/10.1182/blood.2020009192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Abbott RC, Hughes-Parry HE, Jenkins MR. To go or not to go? Biological logic gating engineered T cells. J Immunother Cancer 2022;10(4). https://doi.org/10.1136/jitc-2021-004185.

  117. Giuffrida L, Sek K, Henderson MA, Lai J, Chen AXY, Meyran D, Todd KL, Petley EV, Mardiana S, Mølck C, et al. CRISPR/Cas9 mediated deletion of the adenosine A2A receptor enhances CAR T cell efficacy. Nat Commun. 2021;12(1):3236. https://doi.org/10.1038/s41467-021-23331-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all authors contributing to this work.

Funding

This work was supported by grants from the General Project of the National Natural Science Foundation of China (81970180), the Science and Technology Project of Tianjin Municipal Health Committee (TJWJ2022QN030), the Key Projects of Tianjin Applied Basic Research and Multi-Investment Fund (21JCZDJC01240), the Science and Technology Project of Tianjin Municipal Health Committee (TJWJ2022XK018), Tianjin Key Medical Discipline (Specialty) Construction Project (TJYXZDXK-056B), Tianjin Municipal Natural Science Foundation (22JCQNJC00820), Tianjin Health Research Project (TJWJ2023QN027), Tianjin Health Bureau Project (ZC20074), and Tianjin Key Medical Discipline (Specialty) Construction Project (TJWJ2023XK010).

Author information

Authors and Affiliations

Authors

Contributions

SG drafted the manuscript; SG and XG drew the figure and reviewed the literature. MZ, LW, JL, and RG provided critical revision of the paper. All authors participated in the process of drafting and revising the manuscript. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Wenyi Lu MD or Ming Feng Zhao MD.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interests

The authors declare that they have no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, S., Gao, X., Sadhana, M. et al. Developing Strategies to Improve the Efficacy of CAR-T Therapy for Acute Myeloid Leukemia. Curr. Treat. Options in Oncol. 24, 1614–1632 (2023). https://doi.org/10.1007/s11864-023-01140-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11864-023-01140-w

Keywords

Navigation