Skip to main content
Log in

An Extended McKean–Vlasov Dynamic Programming Approach to Robust Equilibrium Controls Under Ambiguous Covariance Matrix

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

This paper studies a general class of time-inconsistent stochastic control problems under ambiguous covariance matrix. The time inconsistency is caused in various ways by a general objective functional and thus the associated control problem does not admit Bellman’s principle of optimality. Moreover, we model the state by a McKean–Vlasov dynamics under a set of non-dominated probability measures induced by the ambiguous covariance matrix of the noises. We apply a game-theoretic concept of subgame perfect Nash equilibrium to develop a robust equilibrium control approach, which can yield robust time-consistent decisions. We characterize the robust equilibrium control and equilibrium value function by an extended optimality principle and then we further deduce a system of Bellman–Isaacs equations to determine the equilibrium solution on the Wasserstein space of probability measures. The proposed analytical framework is illustrated with its applications to robust continuous-time mean-variance portfolio selection problems with risk aversion coefficient being constant or state-dependent, under the ambiguity stemming from ambiguous volatilities of multiple assets or ambiguous correlation between two risky assets. The explicit equilibrium portfolio solutions are represented in terms of the probability law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, E.W., Hansen, L.P., Sargent, T.J.: A quartet of semigroups for model specification, robustness, prices of risk, and model detection. J. Eur. Econ. Assoc. 1(1), 68–123 (2003). https://doi.org/10.1162/154247603322256774

    Article  Google Scholar 

  2. Bajeux-Besnainou, I., Portait, R.: Dynamic asset allocation in a mean-variance framework. Manage. Sci. 44(11-part-2), S1–S144 (1998). https://doi.org/10.1287/mnsc.44.11.s79

  3. Barlow, M.T.: One dimensional stochastic differential equations with no strong solution. J. Lond. Math. Soc. s2-26(2), 335–347 (1982). https://doi.org/10.1112/jlms/s2-26.2.335

  4. Basak, S., Chabakauri, G.: Dynamic mean-variance asset allocation. Rev. Financ. Stud. 23(8), 2970–3016 (2010). https://doi.org/10.1093/rfs/hhq028

    Article  Google Scholar 

  5. Basei, M., Pham, H.: A weak martingale approach to linear-quadratic McKean-Vlasov stochastic control problems. J. Optim. Theory Appl. 181(2), 347–382 (2019). https://doi.org/10.1007/s10957-018-01453-z

    Article  MathSciNet  MATH  Google Scholar 

  6. Bellman, R.E.: Dynamic Programming. Princeton University Press, Princeton (2010)

    Book  MATH  Google Scholar 

  7. Bensoussan, A., Frehse, J., Yam, P., et al.: Mean Field Games and Mean Field Type Control Theory, vol. 101. Springer, New York (2013)

    Book  MATH  Google Scholar 

  8. Bensoussan, A., Wong, K.C., Yam, S.C.P., Yung, S.P.: Time-consistent portfolio selection under short-selling prohibition: From discrete to continuous setting. SIAM J. Financ. Math. 5(1), 153–190 (2014). https://doi.org/10.1137/130914139

    Article  MathSciNet  MATH  Google Scholar 

  9. Biagini, S., Pınar, M.Ç.: The robust Merton problem of an ambiguity averse investor. Math. Financ. Econ. 11(1), 1–24 (2016). https://doi.org/10.1007/s11579-016-0168-6

    Article  MathSciNet  MATH  Google Scholar 

  10. Björk, T., Khapko, M., Murgoci, A.: On time-inconsistent stochastic control in continuous time. Finance Stoch. 21(2), 331–360 (2017). https://doi.org/10.1007/s00780-017-0327-5

    Article  MathSciNet  MATH  Google Scholar 

  11. Bjork, T., Murgoci, A.: A general theory of Markovian time inconsistent stochastic control problems. SSRN (2010). https://doi.org/10.2139/ssrn.1694759

    Article  MATH  Google Scholar 

  12. Björk, T., Murgoci, A.: A theory of Markovian time-inconsistent stochastic control in discrete time. Finance Stoch. 18(3), 545–592 (2014). https://doi.org/10.1007/s00780-014-0234-y

    Article  MathSciNet  MATH  Google Scholar 

  13. Björk, T., Murgoci, A., Zhou, X.Y.: Mean-variance portfolio optimization with state-dependent risk aversion. Math. Finance 24(1), 1–24 (2014). https://doi.org/10.1111/j.1467-9965.2011.00515.x

    Article  MathSciNet  MATH  Google Scholar 

  14. Borkar, V.S., Kumar, K.S.: McKean-Vlasov limit in portfolio optimization. Stoch. Anal. Appl. 28(5), 884–906 (2010). https://doi.org/10.1080/07362994.2010.482836

    Article  MathSciNet  MATH  Google Scholar 

  15. Buckdahn, R., Li, J., Peng, S., Rainer, C.: Mean-field stochastic differential equations and associated PDEs. Ann. Probab. 45(2), 824–878 (2017). https://doi.org/10.1214/15-aop1076

    Article  MathSciNet  MATH  Google Scholar 

  16. Carmona, R.A., Fouque, J.P., Sun, L.H.: Mean field games and systemic risk. Commun. Math. Sci. 13(4), 911–933 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chassagneux, J.F., Crisan, D., Delarue, F.: A probabilistic approach to classical solutions of the master equation for large population equilibria. Mem. Am. Math. Soc. (2022). https://doi.org/10.48550/arXiv.1411.3009

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen, Z., Epstein, L.: Ambiguity, risk, and asset returns in continuous time. Econometrica 70(4), 1403–1443 (2002). https://doi.org/10.1111/1468-0262.00337

    Article  MathSciNet  MATH  Google Scholar 

  19. Chiu, M.C., Pun, C.S., Wong, H.Y.: Big data challenges of high-dimensional continuous-time mean-variance portfolio selection and a remedy. Risk Anal. 37(8), 1532–1549 (2017). https://doi.org/10.1111/risa.12801

    Article  Google Scholar 

  20. Cosso, A., Pham, H.: Zero-sum stochastic differential games of generalized McKean-Vlasov type. Journal de Mathématiques Pures et Appliquées 129, 180–212 (2019). https://doi.org/10.1016/j.matpur.2018.12.005

    Article  MathSciNet  MATH  Google Scholar 

  21. Denis, L., Hu, M., Peng, S.: Function spaces and capacity related to a sublinear expectation: Application to G-Brownian motion paths. Potential Anal. 34(2), 139–161 (2010). https://doi.org/10.1007/s11118-010-9185-x

    Article  MathSciNet  MATH  Google Scholar 

  22. Denis, L., Martini, C.: A theoretical framework for the pricing of contingent claims in the presence of model uncertainty. Ann. Appl. Probab. 16(2), 827–852 (2006). https://doi.org/10.1214/105051606000000169

    Article  MathSciNet  MATH  Google Scholar 

  23. El Karoui, N.: Les Aspects Probabilistes Du Controle Stochastique. Springer, Berlin (1981)

    Book  MATH  Google Scholar 

  24. Epstein, L.G., Ji, S.: Ambiguous volatility, possibility and utility in continuous time. J. Math. Econ. 50, 269–282 (2014). https://doi.org/10.1016/j.jmateco.2013.09.005

    Article  MathSciNet  MATH  Google Scholar 

  25. Fouque, J.P., Pun, C.S., Wong, H.Y.: Portfolio optimization with ambiguous correlation and stochastic volatilities. SIAM J. Control Optim. 54(5), 2309–2338 (2016). https://doi.org/10.1137/15m1032533

    Article  MathSciNet  MATH  Google Scholar 

  26. Gilboa, I., Schmeidler, D.: Maxmin expected utility with non-unique prior. J. Math. Econ. 18(2), 141–153 (1989). https://doi.org/10.1016/0304-4068(89)90018-9

    Article  MATH  Google Scholar 

  27. Girsanov, I.V.: On transforming a certain class of stochastic processes by absolutely continuous substitution of measures. Theory Probab. Appl. 5(3), 285–301 (1960). https://doi.org/10.1137/1105027

    Article  MathSciNet  MATH  Google Scholar 

  28. Goldman, S.M.: Consistent plans. Rev. Econ. Stud. 47(3), 533–537 (1980). https://doi.org/10.2307/2297304

    Article  MATH  Google Scholar 

  29. Han, B., Pun, C.S., Wong, H.Y.: Robust state-dependent mean-variance portfolio selection: A closed-loop approach. Finance Stoch. 25(3), 529–561 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  30. Han, B., Pun, C.S., Wong, H.Y.: Robust time-inconsistent stochastic linear-quadratic control with drift disturbance. Appl. Math. Optim. (2022). https://doi.org/10.1007/s00245-022-09871-2

    Article  MathSciNet  MATH  Google Scholar 

  31. Hansen, L.P., Sargent, T.J., Turmuhambetova, G., Williams, N.: Robust control and model misspecification. J. Econ. Theory 128(1), 45–90 (2006). https://doi.org/10.1016/j.jet.2004.12.006

    Article  MathSciNet  MATH  Google Scholar 

  32. Hayashi, T., Yoshida, N.: On covariance estimation of non-synchronously observed diffusion processes. Bernoulli 11(2), 359–379 (2005). https://doi.org/10.3150/bj/1116340299

    Article  MathSciNet  MATH  Google Scholar 

  33. Hu, Y., Jin, H., Zhou, X.Y.: Time-inconsistent stochastic linear-quadratic control: Characterization and uniqueness of equilibrium. SIAM J. Control Optim. 55(2), 1261–1279 (2017). https://doi.org/10.1137/15M1019040

    Article  MathSciNet  MATH  Google Scholar 

  34. Ismail, A., Pham, H.: Robust Markowitz mean-variance portfolio selection under ambiguous covariance matrix. Math. Finance 29(1), 174–207 (2019). https://doi.org/10.1111/mafi.12169

    Article  MathSciNet  MATH  Google Scholar 

  35. Karandikar, R.L.: On pathwise stochastic integration. Stoch. Process. Their Appl. 57(1), 11–18 (1995). https://doi.org/10.1016/0304-4149(95)00002-o

    Article  MathSciNet  MATH  Google Scholar 

  36. Kurtz, T.: Weak and strong solutions of general stochastic models. Electron. Commun. Probab. 19, 1–16 (2014). https://doi.org/10.1214/ECP.v19-2833

    Article  MathSciNet  Google Scholar 

  37. Kurtz, T.G., Xiong, J.: Particle representations for a class of nonlinear SPDEs. Stoch. Process. Their Appl. 83(1), 103–126 (1999). https://doi.org/10.1016/s0304-4149(99)00024-1

    Article  MathSciNet  MATH  Google Scholar 

  38. Lasry, J.M., Lions, P.L.: Jeux à champ moyen. I—le cas stationnaire [mean field games. I—the stationary case]. Comptes Rendus Mathematique 343(9), 619–625 (2006). https://doi.org/10.1016/j.crma.2006.09.019

    Article  MathSciNet  MATH  Google Scholar 

  39. Lasry, J.M., Lions, P.L.: Jeux à champ moyen. II—horizon fini et contrôle optimal [mean field games. II—finite horizon and optimal control]. Comptes Rendus Mathematique 343(10), 679–684 (2006). https://doi.org/10.1016/j.crma.2006.09.018

    Article  MathSciNet  MATH  Google Scholar 

  40. Lei, Q., Pun, C.S.: Nonlocal fully nonlinear parabolic differential equations arising in time-inconsistent problems. J. Differ. Equ. 358, 339–385 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lei, Q., Pun, C.S.: Nonlocality, nonlinearity, and time inconsistency in stochastic differential games. Math. Finance (2023). https://doi.org/10.1111/mafi.12420

    Article  Google Scholar 

  42. Li, D., Ng, W.L.: Optimal dynamic portfolio selection: Multiperiod mean-variance formulation. Math. Finance 10(3), 387–406 (2000). https://doi.org/10.1111/1467-9965.00100

    Article  MathSciNet  MATH  Google Scholar 

  43. Maenhout, P.J.: Robust portfolio rules and asset pricing. Rev. Financ. Stud. 17(4), 951–983 (2004). https://doi.org/10.1093/rfs/hhh003

    Article  Google Scholar 

  44. Mania, M., Tevzadze, R.: Backward stochastic PDE and imperfect hedging. Int. J. Theor. Appl. Finance 6(07), 663–692 (2003). https://doi.org/10.1142/S0219024903002122

    Article  MathSciNet  MATH  Google Scholar 

  45. Markowitz, H.: Portfolio selection. J. Finance 7(1), 77–91 (1952). https://doi.org/10.1111/j.1540-6261.1952.tb01525.x

    Article  Google Scholar 

  46. McKean, H.P.: A class of Markov processes associated with nonlinear parabolic equations. Proc. Natl. Acad. Sci. 56(6), 1907–1911 (1966). https://doi.org/10.1073/pnas.56.6.1907

    Article  MathSciNet  MATH  Google Scholar 

  47. Musiela, M., Rutkowski, M.: Martingale Methods in Financial Modelling. Stochastic Modelling and Applied Probability, vol. 36, 2nd edn. Springer, Berlin (2005). https://doi.org/10.1007/b137866

    Book  MATH  Google Scholar 

  48. Nutz, M.: Pathwise construction of stochastic integrals. Electron. Commun. Probab. 17(24), 1–7 (2012). https://doi.org/10.1214/ecp.v17-2099

    Article  MathSciNet  MATH  Google Scholar 

  49. Peng, S.: Nonlinear Expectations and Stochastic Calculus Under Uncertainty, vol. 95, 1st edn. Springer, Berlin (2019). https://doi.org/10.1007/978-3-662-59903-7

    Book  MATH  Google Scholar 

  50. Pham, H.: Continuous-Time Stochastic Control and Optimization with Financial Applications. Stochastic Modelling and Applied Probability, vol. 61, 1st edn. Springer, Berlin (2009). https://doi.org/10.1007/978-3-540-89500-8

    Book  MATH  Google Scholar 

  51. Pham, H., Wei, X.: Dynamic programming for optimal control of stochastic McKean-Vlasov dynamics. SIAM J. Control Optim. 55(2), 1069–1101 (2017). https://doi.org/10.1137/16m1071390

    Article  MathSciNet  MATH  Google Scholar 

  52. Pham, H., Wei, X.: Bellman equation and viscosity solutions for mean-field stochastic control problem. ESAIM: Control Optim. Calc. Var. 24(1), 437–461 (2018). https://doi.org/10.1051/cocv/2017019

    Article  MathSciNet  MATH  Google Scholar 

  53. Pham, H., Wei, X., Zhou, C.: Portfolio diversification and model uncertainty: A robust dynamic mean-variance approach. Math. Finance 32(1), 349–404 (2022). https://doi.org/10.1111/mafi.12320

    Article  MathSciNet  MATH  Google Scholar 

  54. Pun, C.S.: Robust time-inconsistent stochastic control problems. Automatica 94, 249–257 (2018). https://doi.org/10.1016/j.automatica.2018.04.038

    Article  MathSciNet  MATH  Google Scholar 

  55. Pun, C.S.: Time-consistent mean-variance portfolio selection with only risky assets. Econ. Model. 75, 281–292 (2018). https://doi.org/10.1016/j.econmod.2018.07.002

    Article  Google Scholar 

  56. Pun, C.S.: G-expected utility maximization with ambiguous equicorrelation. Quant. Finance 21(3), 403–419 (2021). https://doi.org/10.1080/14697688.2020.1777321

    Article  MathSciNet  MATH  Google Scholar 

  57. Pun, C.S., Siu, C.C., Wong, H.Y.: Non-zero-sum reinsurance games subject to ambiguous correlations. Oper. Res. Lett. 44(5), 578–586 (2016). https://doi.org/10.1016/j.orl.2016.06.004

    Article  MathSciNet  MATH  Google Scholar 

  58. Pun, C.S., Wong, H.Y.: Robust investment-reinsurance optimization with multiscale stochastic volatility. Insur.: Math. Econ. 62, 245–256 (2015). https://doi.org/10.1016/j.insmatheco.2015.03.030

    Article  MathSciNet  MATH  Google Scholar 

  59. Pun, C.S., Wong, H.Y.: Resolution of degeneracy in Merton’s portfolio problem. SIAM J. Financ. Math. 7(1), 786–811 (2016). https://doi.org/10.1137/16m1065021

    Article  MathSciNet  MATH  Google Scholar 

  60. Pun, C.S., Wong, H.Y.: Robust non-zero-sum stochastic differential reinsurance game. Insur.: Math. Econ. 68, 169–177 (2016). https://doi.org/10.1016/j.insmatheco.2016.02.007

    Article  MathSciNet  MATH  Google Scholar 

  61. Richardson, H.R.: A minimum variance result in continuous trading portfolio optimization. Manage. Sci. 35(9), 1045–1055 (1989). https://doi.org/10.1287/mnsc.35.9.1045

    Article  MathSciNet  MATH  Google Scholar 

  62. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer, Berlin (1998). https://doi.org/10.1007/978-3-642-02431-3_14

    Book  MATH  Google Scholar 

  63. Sion, M.: On general minimax theorems. Pac. J. Math. 8(1), 171–176 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  64. Soner, H.M., Touzi, N., Zhang, J.: Martingale representation theorem for the G-expectation. Stoch. Process. Their Appl. 121(2), 265–287 (2011). https://doi.org/10.1016/j.spa.2010.10.006

    Article  MathSciNet  MATH  Google Scholar 

  65. Soner, H.M., Touzi, N., Zhang, J.: Wellposedness of second order backward SDEs. Probab. Theory Relat. Fields 153(1–2), 149–190 (2011). https://doi.org/10.1007/s00440-011-0342-y

    Article  MathSciNet  MATH  Google Scholar 

  66. Soner, M., Touzi, N., Zhang, J.: Quasi-sure stochastic analysis through aggregation. Electron. J. Probab. 16, 1844–1879 (2011). https://doi.org/10.1214/EJP.v16-950

    Article  MathSciNet  MATH  Google Scholar 

  67. Strotz, R.H.: Myopia and inconsistency in dynamic utility maximization. Rev. Econ. Stud. 23(3), 165–180 (1955). https://doi.org/10.2307/2295722

    Article  Google Scholar 

  68. Vigna, E.: On time consistency for mean-variance portfolio selection. Int. J. Theor. Appl. Finance 23(06), 2050042 (2020). https://doi.org/10.1142/s0219024920500429

    Article  MathSciNet  MATH  Google Scholar 

  69. Wald, A.: Statistical decision functions which minimize the maximum risk. Ann. Math. 46(2), 265 (1945). https://doi.org/10.2307/1969022

    Article  MathSciNet  MATH  Google Scholar 

  70. Wei, Q., Yong, J., Yu, Z.: Time-inconsistent recursive stochastic optimal control problems. SIAM J. Control Optim. 55(6), 4156–4201 (2017). https://doi.org/10.1137/16m1079415

    Article  MathSciNet  MATH  Google Scholar 

  71. Yan, T., Han, B., Pun, C.S., Wong, H.Y.: Robust time-consistent mean-variance portfolio selection problem with multivariate stochastic volatility. Math. Financ. Econ. 14(4), 699–724 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  72. Yan, W., Yong, J.: Time-inconsistent optimal control problems and related issues. In: Yin, G., Zhang, Q. (eds.) Modeling, Stochastic Control, Optimization, and Applications, vol. 164, pp. 533–569. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25498-8_22

    Chapter  Google Scholar 

  73. Yong, J.: Time-inconsistent optimal control problems and the equilibrium HJB equation. Math. Control Relat. Fields 2(3), 271–329 (2012). https://doi.org/10.3934/mcrf.2012.2.271

    Article  MathSciNet  MATH  Google Scholar 

  74. Yong, J., Zhou, X.Y.: Stochastic Controls: Hamiltonian Systems and HJB Equations, Stochastic Modelling and Applied Probability, vol. 43. Springer, New York (1999)

    Book  MATH  Google Scholar 

  75. Zhou, X.Y., Li, D.: Continuous-time mean-variance portfolio selection: A stochastic LQ framework. Appl. Math. Optim. 42(1), 19–33 (2000). https://doi.org/10.1007/s002450010003

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank two anonymous referees and the editors for their careful reading and valuable comments, which have greatly improved the manuscript.

Funding

Funding was provided by Ministry of Education - Singapore (Grant No. MOE-T2EP20220-0013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi Seng Pun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Chi Seng Pun gratefully acknowledges the Ministry of Education (MOE), AcRF Tier 2 grant (Reference No: MOE-T2EP20220-0013) for the funding of this research.

Appendix A: Differentiability on Wasserstein Space

Appendix A: Differentiability on Wasserstein Space

The derivative relies on the lifting of functions of \(u:{\mathcal {P}}_2(\mathbb {R}^d)\mapsto \mathbb {R}\) into \(\mathbb {R}\)-valued functions U defined on \(L^2(\Omega ,{\mathcal {G}},\mathbb {P};\mathbb {R^d}^d)\) by \(U(X)=u(\mathbb {P}_X)\). If the lift U is Fréchet differentiable (respectively, Fréchet differentiable with continuous derivatives) on \(L^2({\mathcal {G}};\mathbb {R}^d)\), then we call that u is differentiable (respectively, \(C^1\)) on \({\mathcal {P}}_2(\mathbb {R}^d)\). By the Riesz’ representation theorem, we can find an element DU(X) of \(L^2({\mathcal {G}};\mathbb {R}^d)\) such that the Fréchet derivative [DU](X) satisfies the relation \([DU](X)(Y)=\mathbb {E}[DU(X)Y]\). Moreover, it can be represented as \(DU(X)=\partial _\nu u(\mathbb {P}_X)(X)\), where the function \(\partial _\nu u(\mathbb {P}_X):\mathbb {R}^d\mapsto \mathbb {R}^d\) is called the derivative of u at \(\nu =\mathbb {P}_X\). If we denote by \(L^2_\nu (\mathbb {R}^d)\) the set of measurable functions \(\varphi :\mathbb {R}^d\mapsto \mathbb {R}^d\), which are square-integrable with respect to \(\nu \), then there is \(\partial _\nu u(\nu )\in L^2_\nu (\mathbb {R}^d)\) for \(\nu \in {\mathcal {P}}_2(\mathbb {R}^d)=\{\mathbb {P}_X:X\in L^2({\mathcal {G}};\mathbb {R}^d)\}\). We say that u is partially \(C^2\) if

  • it is \(C^1\);

  • for any \(\nu \in {\mathcal {P}}_2(\mathbb {R}^d)\), the mapping \((\nu ,x)\in {\mathcal {P}}_2(\mathbb {R}^d)\times \mathbb {R}^d\mapsto \partial _\nu u(\nu )(x)\) is continuous at any point \((\nu ,x)\) such that \(x\in Supp(\nu )\);

  • for any \(\nu \in {\mathcal {P}}_2(\mathbb {R}^d)\), the mapping \(x\in \mathbb {R}^d\mapsto \partial _\nu u(\nu )(x)\) is differentiable in the standard sense, and its derivative is jointly continuous at any point \((\nu ,x)\) such that \(x\in Supp(\nu )\).

then we denote the gradient as \(\partial _x\partial _\nu u(\nu )(x)\in \mathbb {R}^{d\times d}\).

Now, we give examples to explain the notion of the derivative when \(d=1\). If we suppose \(u(\nu )=\int _\mathbb {R}h(x)\nu (dx)\), then its lifted function is \(U(X)=\mathbb {E}[h(X)]\) and the Fréchet derivative of which is \([DU](X)(Y)=\mathbb {E}[D_xh(X)Y]\), which shows that \(\partial _\nu u(\nu )=D_xh\) and \(\partial _x\partial _\nu u(\nu )=D^2_x h\). In our paper, we study the Markowitz mean-variance portfolio selection problems as examples. Its objective functional consists of a mean-term \(\mathbb {E}(X_T)\) and a variance-term \(\hbox {Var}(X_T)\), which measure the expectation of return and the risk at the terminal time T, respectively. Their corresponding derivatives are given as follows:

  • When \(h(x)=x\), that is, \(u(\nu )={\overline{\nu }}:=\int _\mathbb {R}x\nu (dx)\), then \(U(X)=\mathbb {E}(X)\), \(\partial _\nu u(\nu )(x)=1\) and \(\partial _x\partial _\nu u(\nu )(x)=0\);

  • When \(h(x)=(x-{\overline{\nu }})^2\), it means that \(u(\nu )=\hbox {Var}(\nu ):=\int _\mathbb {R}(x-{\overline{\nu }})^2\nu (dx)\). Then \(U(X)=\hbox {Var}(X)\), and thus \(\partial _\nu u(\nu )(x)=2(x-{\overline{\nu }})\) and \(\partial _x\partial _\nu u(\nu )(x)=2\),

which show that both \({\overline{\nu }}\) and \(\hbox {Var}(\nu )\) are \(C^2\).

1.1 A.1 Itô’s Formula in Wasserstein Space

Next, we introduce the chain rule for functions defined on \({\mathcal {P}}_2(\mathbb {R}^d)\) proven independently by Buckdahn et al. [15] and Chassagneux et al. [17]. Let us consider a stochastic process with the form of (2.4) and a partially \(C^2\) function u on \({\mathcal {P}}_2(\mathbb {R}^d)\), then for any fixed \((t,\xi )\in [0,T]\times L^2({\mathcal {F}}_t;\mathbb {R}^d)\) and fixed \((\alpha ,\sigma )\in {\mathcal {A}}\times {\mathcal {V}}_\Theta \), we have

$$\begin{aligned} \begin{aligned}&~u\left( s,\rho ^{t,\mu ,\alpha ,\sigma }_s\right) =u\big (t,\mu \big )+\int ^s_t \partial _\tau u\left( \tau ,\rho ^{t,\mu ,\alpha ,\sigma }_\tau \right) d\tau \\&+\int ^s_t\mathbb {E}^\sigma \left[ \partial _\mu u\left( \tau ,\rho ^{t,\mu ,\alpha ,\sigma }_\tau \right) \big (X^{t,\xi ,\alpha }_\tau \big )\cdot b_\tau +\frac{1}{2}\textrm{tr}\left( \partial _x\partial _\mu u\left( \tau ,\rho ^{t,\mu ,\alpha ,\sigma }_\tau \right) \big (X^{t,\xi ,\alpha }_\tau \big )\cdot a_\tau \right) \right] d\tau \end{aligned} \end{aligned}$$

for \(s\in [t,T]\), where \(a_\tau =h_\tau \Sigma _\tau h_\tau ^{\top }\). Moreover, the first integral-term corresponds to the time variation from t to s, while the second one corresponds to the variation of measures from \(\mu =\rho ^{t,\mu ,\alpha ,\sigma }_t\) to \(\rho ^{t,\mu ,\alpha ,\sigma }_s\).

When \(d=1\), by Itô’s lemma along the flow of conditional measures, it is clear that

  • \(\overline{\rho ^{t,\mu ,\alpha ,\sigma }_s}={\overline{\mu }}+\int ^s_t\mathbb {E}^\sigma \left[ b_\tau \right] d\tau \);

  • \(\hbox {Var}(\rho ^{t,\mu ,\alpha ,\sigma }_s)=\hbox {Var}\left( \mu \right) +\int ^s_t\mathbb {E}^\sigma [h^2_\tau \Sigma _\tau ]d\tau \).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, Q., Pun, C.S. An Extended McKean–Vlasov Dynamic Programming Approach to Robust Equilibrium Controls Under Ambiguous Covariance Matrix. Appl Math Optim 88, 91 (2023). https://doi.org/10.1007/s00245-023-10069-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00245-023-10069-3

Keywords

Mathematics Subject Classification

Navigation