Skip to main content
Log in

DNA Methylation Profiling of Ovarian Tissue of Climbing Perch (Anabas testudienus) in Response to Monocrotophos Exposure

  • Research
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Epigenetic modifications like DNA methylation can alter an organism’s phenotype without changing its DNA sequence. Exposure to environmental toxicants has the potential to change the resilience of aquatic species. However, little information is available on the dynamics of DNA methylation in fish gonadal tissues in response to organophosphates. In the present work, reduced-representation bisulfite sequencing was performed to identify DNA methylation patterns in the ovarian tissues of Anabas testudienus exposed to organophosphates, specifically monocrotophos (MCP). Through sequencing, an average of 41,087 methylated cytosine sites were identified and distributed in different parts of genes, i.e., in transcription start sites (TSS), promoters, exons, etc. A total of 1058 and 1329 differentially methylated regions (DMRs) were detected as hyper-methylated and hypo-methylated in ovarian tissues, respectively. Utilizing whole-genome data of the climbing perch, the DMRs, and their associated overlapping genes revealed a total of 22 genes within exons, 45 genes at transcription start sites (TSS), and 218 genes in intergenic regions. Through gene ontology analysis, a total of 16 GO terms particularly involved in ovarian follicular development, response to oxidative stress, oocyte maturation, and multicellular organismal response to stress associated with reproductive biology were identified. After functional enrichment analysis, relevant DMGs such as steroid hormone biosynthesis (Cyp19a, 11-beta-HSD, 17-beta-HSD), hormone receptors (ar, esrrga), steroid metabolism (StAR), progesterone-mediated oocyte maturation (igf1ar, pgr), associated with ovarian development in climbing perch showed significant differential methylation patterns. The differentially methylated genes (DMGs) were subjected to analysis using real-time PCR, which demonstrated altered gene expression levels. This study revealed a molecular-level alteration in genes associated with ovarian development in response to chemical exposure. This work provides evidence for understanding the relationship between DNA methylation and gene regulation in response to chemicals that affect the reproductive fitness of aquatic animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The generated data are available in the NCBI database. The accession numbers for our submissions are SRR22905449 and SRR22904546.

References

  • Akalin A, Kormaksson M, Li S, Garrett-Bakelman FE, Figueroa ME, Melnick A, Mason CE (2012) methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol 13:R87. https://doi.org/10.1186/gb-2012-13-10-r87

    Article  PubMed  PubMed Central  Google Scholar 

  • Alavian-Ghavanini A, Rüegg J (2018) Understanding epigenetic effects of endocrine disrupting chemicals: from mechanisms to novel test methods. Basic Clin Pharmacol Toxicol 122:38–45

    Article  CAS  PubMed  Google Scholar 

  • Aluru N, Kuo E, Helfrich LW, Karchner SI, Linney EA, Pais JE, Franks DG (2015) Developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin alters DNA methyltransferase (dnmt) expression in zebrafish (Danio rerio). Toxicol Appl Pharmacol 284:142–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aluru N, Karchner SI, Krick KS, Zhu W, Liu J (2018) Role of DNA methylation in altered gene expression patterns in adult zebrafish (Danio rerio) exposed to 3, 3′, 4, 4′, 5-pentachlorobiphenyl (PCB 126). Environ Epigen 4. https://doi.org/10.1093/eep/dvy005

  • Aniagu SO, Williams TD, Allen Y, Katsiadaki I, Chipman JK (2008) Global genomic methylation levels in the liver and gonads of the three-spine stickleback (Gasterosteus aculeatus) after exposure to hexabromocyclododecane and 17-beta oestradiol. Environ Int 34:310–317

    Article  CAS  PubMed  Google Scholar 

  • Anqi Y, Saina Y, Chujie C, Yanfei Y, Xiangwei T, Jiajia M, Jiaojiao X, Maoliang R, Bin C (2022) Regulation of DNA methylation during the testicular development of Shaziling pigs. Genomics 114:110450. https://doi.org/10.1016/j.ygeno.2022.110450

    Article  CAS  PubMed  Google Scholar 

  • Apha, (2005) Standard Methods for Examinations of Water and Wastewater, 21st edn. APHA, AWWA and WEF DC, Washington

    Google Scholar 

  • Astm (1990) American Society for Testing of Materials method 729–90: 1990 Guide for conducting acute toxicity test with fishes, macroinvertebrates and pesticide on growth and survival of African catfish, amphibians

  • Beemelmanns A, Ribas L, Anastasiadi D, Moraleda-Prados J, Zanuzzo FS, Rise ML, Gamperl AK (2021) DNA methylation dynamics in Atlantic salmon (Salmo salar) challenged with high temperature and moderate hypoxia. 7. https://doi.org/10.3389/fmars.2020.604878

  • Beketov MA, Kefford BJ, Schäfer RB, Liess M (2013) Pesticides Reduce Regional Biodiversity of Stream Invertebrates 110:11039–11043. https://doi.org/10.1073/pnas.1305618110

    Article  Google Scholar 

  • Best C, Ikert H, Kostyniuk DJ, Craig PM, Navarro-Martin L, Marandel L, Mennigen JA (2018) Epigenetics in teleost fish: from molecular mechanisms to physiological phenotypes. Comp Biochem Physiol B Biochem Mol Biol 224:210–244

    Article  CAS  PubMed  Google Scholar 

  • Bharti S, Rasool F (2021) Analysis of the biochemical and histopathological impact of a mild dose of commercial malathion on Channa punctatus (Bloch) fish. Toxicol Rep 8:443–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brander SM, Biales AD, Connon RE (2017) The role of epigenomics in aquatic toxicology. Environ Toxicol Chem 36:2565–2573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandhini S, Rejish Kumar VJ (2019) Transcriptomics in aquaculture: current status and applications. Rev Aquac 11:1379–1397

    Article  Google Scholar 

  • Corrales J, Fang X, Thornton C, Mei W, Barbazuk WB, Duke M, Scheffler BE, Willett KL (2014) Effects on specific promoter DNA methylation in zebrafish embryos and larvae following benzo[a]pyrene exposure. Comp Biochem Physiol C Toxicol Pharmacol 163:37–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards JR, Yarychkivska O, Boulard M, Bestor TH (2017) DNA methylation and DNA methyltransferases. Epigenetics Chromatin 10:23. https://doi.org/10.1186/s13072-017-0130-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falconer L, Hjøllo SS, Telfer TC, Mcadam BJ, Hermansen Ø, Ytteborg E (2020) The importance of calibrating climate change projections to local conditions at aquaculture sites. Aquaculture 514:734487. https://doi.org/10.1016/j.aquaculture.2019.734487

    Article  Google Scholar 

  • Fao (2019) Food and Agricultural Organization. Yearbook of Fishery and Aquaculture Statistics 2019

  • Feng K, Cui X, Song Y, Tao B, Chen J, Wang J, Liu S, Sun Y, Zhu Z, Trudeau VL, Hu W (2019) Gnrh3 regulates PGC proliferation and sex differentiation in developing zebrafish. Endocrinology 161. https://doi.org/10.1210/endocr/bqz024

  • Fetke JK, Martinson JW, Flick RW, Huang W, Bencic DC, See MJ, Pilgrim EM, Debry RW, Biales AD (2021) DNA methylation and expression of estrogen receptor alpha in fathead minnows exposed to 17α-ethynylestradiol. Aquat Toxicol 233:105788. https://doi.org/10.1016/j.aquatox.2021.105788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finney DJ (1971) Probit analysis. Cambridge University Press, London. J Pharma Sci 68–72. https://doi.org/10.1002/jps.2600600940

  • Fürbass, R., Selimyan, R. & Vanselow, J. (2008). DNA methylation and chromatin accessibility of the proximal Cyp19 promoter region 1.5/2 correlate with expression levels in sheep placentomes. 75:1–7.https://doi.org/10.1002/mrd.20756

  • Gao D, Lin J, Ou K, Chen Y, Li H, Dai Q, Yu Z, Zuo Z, Wang C (2018) Embryonic exposure to benzo(a)pyrene inhibits reproductive capability in adult female zebrafish and correlation with DNA methylation. Environ Pollut 240:403–411

    Article  CAS  PubMed  Google Scholar 

  • Gavery MR, Nichols KM, Berejikian BA, Tatara CP, Goetz GW, Dickey JT, Van Doornik DM, Swanson P (2019) Temporal dynamics of DNA methylation patterns in response to rearing juvenile steelhead (Oncorhynchus mykiss) in a hatchery versus simulated stream environment. 10:356

  • Gavery MR, Roberts SB (2017) Epigenetic Considerations in Aquaculture Peerj 5:e4147. https://doi.org/10.7717/peerj.4147

    Article  CAS  PubMed  Google Scholar 

  • Goll MG, Halpern ME (2011) DNA methylation in zebrafish. Prog Mol Biol Transl Sci 101:193–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guiguen Y, Fostier A, Piferrer F, Chang CF (2010) Ovarian aromatase and estrogens: a pivotal role for gonadal sex differentiation and sex change in fish. Gen Comp Endocrinol 165:352–366

    Article  CAS  PubMed  Google Scholar 

  • Hanna RN, Daly SC, Pang Y, Anglade I, Kah O, Thomas P, Zhu Y (2010) Characterization and expression of the nuclear progestin receptor in zebrafish gonads and brain. Biol Reprod 82:112–122

    Article  CAS  PubMed  Google Scholar 

  • Heras J (2020) Fish transcriptomics: applied to our understanding of aquaculture. Preprints 2020010332 https://doi.org/10.20944/preprints202001.0332.v1

  • Hu Q, Ao Q, Tan Y, Gan X, Luo Y, Zhu J (2020) Genome-wide DNA methylation and RNA analysis reveal potential mechanism of resistance to Streptococcus agalactiae in GIFT strain of Nile tilapia (Oreochromis niloticus). J Immunol 204:3182–3190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Wu Y, Chen K, Zhang X, Zhao J, Luo Q, Liu H, Wang F, Li K, Fei S, Zhang X, Ou M (2023) Gene Expression and Epigenetic Modification of Aromatase during Sex Reversal and Gonadal Development in Blotched Snakehead (channa Maculata) 8:129

    CAS  Google Scholar 

  • Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13:484–492

    Article  CAS  PubMed  Google Scholar 

  • Karunarathne A, Bhalla A, Sethi A, Perera U, Eddleston M (2021) Importance of pesticides for lethal poisoning in India during 1999 to 2018: a systematic review. BMC Public Health 21:1441. https://doi.org/10.1186/s12889-021-11156-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Kelley JL, Tobler M, Beck D, Sadler-Riggleman I, Quackenbush CR, Arias Rodriguez L, Skinner MK (2021) Epigenetic inheritance of DNA methylation changes in fish living in hydrogen sulfide-rich springs. Proc Natl Acad Sci USA 118. https://doi.org/10.1073/pnas.2014929118

  • Khatib I, Rychter P, Falfushynska H (2022) Pesticide pollution: detrimental outcomes and possible mechanisms of fish exposure to common organophosphates and triazines. Journal of Xenobiotics 12:236–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knower KC, To SQ, Simpson ER, Clyne CDJM, Endocrinology C (2010) Epigenetic mechanisms regulating CYP19 transcription in human breast adipose fibroblasts. 321:123–130

  • Korkmaz C, Donmez AE (2017) Effects of diazinon on 17 beta-estradiol, plasma vitellogenin and liver and gonad tissues of common carp (Cyprinus carpio, L., 1758). Turk J Fish Aquat Sci 17:629–640

    Article  Google Scholar 

  • Kossack ME, High SK, Hopton RE, Yan Y-L, Postlethwait JH, Draper BW (2018) Female sex development and reproductive duct formation depend on Wnt4a in zebrafish. Genetics 211:219–233

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar K, L.P.L., Sahoo M, Mohanty U L, Kumar R, Sahu a K, (2013) Length-weight relationship and condition factor of Anabas testudineus and Channa species under different culture systems. World J Fish Mar Sci 5:74–78

    Google Scholar 

  • Kumar K, M.U.L., Kumar R, Damle D, Noor Jahan, Jena J K, Eknath a E, (2012) Culture of freshwater climbing perch, Anabas testudineus. Aquac Asia 17:27–28

    Google Scholar 

  • Kuo M-W, Lou S-W, Postlethwait J, Chung B-C (2005) Chromosomal organization, evolutionary relationship, and expression of zebrafish GnRH family members. J Biomed Sci 12:629–639

    Article  CAS  PubMed  Google Scholar 

  • Kurdyukov S, Bullock M (2016) DNA Methylation Analysis: Choosing the Right Method 5:3

    Google Scholar 

  • Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leerberg DM, Sano K, Draper BW (2017) Fibroblast growth factor signaling is required for early somatic gonad development in zebrafish. PLoS Genet 13:e1006993. https://doi.org/10.1371/journal.pgen.1006993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lethimonier C, Madigou T, Muñoz-Cueto J-A, Lareyre J-J, Kah O (2004) Evolutionary aspects of GnRHs, GnRH neuronal systems and GnRH receptors in teleost fish. Gen Comp Endocrinol 135:1–16

    Article  CAS  PubMed  Google Scholar 

  • Li L, Dong J, Yan L, Yong J, Liu X, Hu Y, Fan X, Wu X, Guo H, Wang X, Zhu X, Li R, Yan J, Wei Y, Zhao Y, Wang W, Ren Y, Yuan P, Yan Z, Hu B, Guo F, Wen L, Tang F, Qiao J (2017) Single-cell RNA-Seq analysis maps development of human germline cells and gonadal niche interactions. Cell Stem Cell 20:858-873.e4

    Article  CAS  PubMed  Google Scholar 

  • Li P, Chen J, Zhu C, Pan Z, Li Q, Wei H, Wang G, Cheng W, Fu B, Sun Y (2022) DNA methylation difference between female and male ussuri catfish (Pseudobagrus ussuriensis) in Brain and Gonad Tissues. 12:874

  • Liu, Z., Zhou, T. & Gao, D. (2022). Genetic and epigenetic regulation of growth, reproduction, disease resistance and stress responses in aquaculture. 13. https://doi.org/10.3389/fgene.2022.994471

  • Livak KJ, Schmittgen TDJM (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lou S, Lee H-M, Qin H, Li J-W, Gao Z, Liu X, Chan LL, Kl Lam V, So W-Y, Wang Y, Lok S, Wang J, Ma RCW, Tsui SK-W, Chan JCN, Chan T-F, Yip KY (2014) Whole-genome bisulfite sequencing of multiple individuals reveals complementary roles of promoter and gene body methylation in transcriptional regulation. Genome Biol 15:408. https://doi.org/10.1186/s13059-014-0408-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lubzens E, Young G, Bobe J, Cerdà J (2010) Oogenesis in teleosts: how fish eggs are formed. Gen Comp Endocrinol 165:367–389

    Article  CAS  PubMed  Google Scholar 

  • Lushchak VI, Matviishyn TM, Husak VV, Storey JM, Storey KB (2018) Pesticide toxicity: a mechanistic approach. EXCLI J 17:1101–1136

    PubMed  PubMed Central  Google Scholar 

  • Mirbahai L, Yin G, Bignell JP, Li N, Williams TD, Chipman JK (2011) DNA methylation in liver tumorigenesis in fish from the environment. Epigenetics 6:1319–1333

    Article  CAS  PubMed  Google Scholar 

  • Mohapatra S, Kumar R, Patnaik ST, Mishra CS, Sahoo L, Sundaray JK (2020) Changes in ovary and testis and breeding fitness of the climbing perch, Anabas testudineus (Bloch, 1792), exposed to sub-lethal concentrations of monocrotophos. Aquac Res 51:3230–3236

    Article  CAS  Google Scholar 

  • Mohapatra S, Kumar R, Sundaray JK, Patnaik ST, Mishra CSK, Rather MA (2021) Structural damage in liver, gonads, and reduction in spawning performance and alteration in the haematological parameter of Anabas testudineus by glyphosate- a herbicide. 52:1150–1159.https://doi.org/10.1111/are.14973

  • Monga R, Ghai S, Datta TK, Singh D (2011) Tissue-specific promoter methylation and histone modification regulate CYP19 gene expression during folliculogenesis and luteinization in buffalo ovary. Gen Comp Endocrinol 173:205–215

    Article  CAS  PubMed  Google Scholar 

  • Moore LD, Le T, Fan G (2013) DNA methylation and its basic function. Neuropsychopharmacol: offic public Am College Neuropsychopharmacol 38:23–38.

  • Navarro-Martín L, Viñas J, Ribas L, Díaz N, Gutiérrez A, Di Croce L, Piferrer F (2011) DNA methylation of the gonadal aromatase (cyp19a) promoter is involved in temperature-dependent sex ratio shifts in the European sea bass. PLoS Genet 7:e1002447. https://doi.org/10.1371/journal.pgen.1002447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oecd (1992) Organization for Economic Co-operation and Development (OECD). Guideline 203. OECD Guideline for Testing of Chemicals: Fish, Acute Toxicity Test

  • Ogino Y, Ansai S, Watanabe E, Yasugi M, Katayama Y, Sakamoto H, Okamoto K, Okubo K, Yamamoto Y, Hara I, Yamazaki T, Kato A, Kamei Y, Naruse K, Ohta K, Ogino H, Sakamoto T, Miyagawa S, Sato T, Yamada G, Baker ME, Iguchi T (2023) Evolutionary differentiation of androgen receptor is responsible for sexual characteristic development in a teleost fish. Nat Commun 14:1428. https://doi.org/10.1038/s41467-023-37026-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsvik PA, Williams TD, Tung HS, Mirbahai L, Sanden M, Skjaerven KH, Ellingsen S (2014) Impacts of TCDD and MeHg on DNA methylation in zebrafish (Danio rerio) across two generations. Comp Biochem Physiol C Toxicol Pharmacol 165:17–27

    Article  CAS  PubMed  Google Scholar 

  • Olsvik PA, Whatmore P, Penglase SJ, Skjærven KH, Anglès D’auriac M, Ellingsen S (2019) Associations between behavioral effects of bisphenol A and DNA methylation in zebrafish embryos. Front Genet 10:184. https://doi.org/10.3389/fgene.2019.00184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortiz-Delgado JB, Funes V, Albendín G, Scala E, Sarasquete C (2021) Toxicity of malathion during Senegalese sole, Solea senegalensis larval development and metamorphosis: histopathological disorders and effects on type B esterases and CYP1A enzymatic systems. 36:1894–1910.https://doi.org/10.1002/tox.23310

  • Paksa A, Raz E (2015) Zebrafish germ cells: motility and guided migration. Curr Opin Cell Biol 36:80–85

    Article  CAS  PubMed  Google Scholar 

  • Pamanji R, Bethu MS, Yashwanth B, Leelavathi S, Venkateswara Rao J (2015) Developmental toxic effects of monocrotophos, an organophosphorous pesticide, on zebrafish (Danio rerio) embryos. Environ Sci Pollut Res 22:7744–7753

    Article  CAS  Google Scholar 

  • Pan Y, Chen L, Cheng J, Zhu X, Wu P, Bao L, Chu W, He S, Liang X, Zhang J (2021) Genome-wide DNA methylation profiles provide insight into epigenetic regulation of red and white muscle development in Chinese perch Siniperca chuatsi. Comp Biochem Physiol B: Biochem Mol Biol 256:110647. https://doi.org/10.1016/j.cbpb.2021.110647

    Article  CAS  PubMed  Google Scholar 

  • Pan Z, Wang X, Di R, Liu Q, Hu W, Cao X, Guo X, He X, Lv S, Li F, Wang H, Chu M (2018) A 5-methylcytosine site of growth differentiation factor 9 (GDF9) gene affects its tissue-specific expression in sheep. 8:200

  • Paul BN, Chanda S, Bhowmick S, Sridhar N, Saha GS, Gir SS (2017) Nutrient profile of indian climbing perch, Anabas testudineus

  • Rani G, Kumaraguru AK (2014) Behavioural responses and acute toxicity of Clarias batrachus to synthetic pyrethroid insecticide, λ-cyhalothrin. SAARC J Agri 15:99–109

  • Shi R, Li X, Cheng P, Yang Q, Chen Z, Chen S, Wang N (2022) Characterization of growth differentiation factor 9 and bone morphogenetic factor 15 in Chinese tongue sole (Cynoglossus semilaevis): sex-biased expression pattern and promoter regulation. Theriogenology 182:119–128

    Article  CAS  PubMed  Google Scholar 

  • Smith J, Sen S, Weeks RJ, Eccles MR, Chatterjee A (2020) Promoter DNA hypermethylation and paradoxical gene activation. Trends in Cancer 6:392–406

    Article  CAS  PubMed  Google Scholar 

  • Stadlinger N, Berg H, Van Den Brink PJ, Tam NT, Gunnarsson JS (2018) Comparison of predicted aquatic risks of pesticides used under different rice-farming strategies in the Mekong Delta. Vietnam Environ Sci Pollut Res 25:13322–13334

    Article  CAS  PubMed  Google Scholar 

  • Stopa N, Krebs JE, Shechter D (2015) The PRMT5 arginine methyltransferase: many roles in development, cancer and beyond. Cell Mol Life Sci 72:2041–2059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sudhagar A, Kumar G, El-Matbouli M (2018a) Transcriptome Analysis Based on RNA-Seq in Understanding Pathogenic Mechanisms of Diseases and the Immune System of Fish: a Comprehensive Review 19:245

    Google Scholar 

  • Sudhagar A, Kumar G, El-Matbouli M (2018b) Transcriptome analysis based on RNA-Seq in understanding pathogenic mechanisms of diseases and the immune system of fish: a comprehensive review. Int J Mol Sci 19. https://doi.org/10.3390/ijms19010245

  • Sundaray JK, Dixit S, Rather A, Rasal KD, Sahoo L (2022) Aquaculture omics: an update on the current status of research and data analysis. Mar Genomics 64:100967. https://doi.org/10.1016/j.margen.2022.100967

    Article  CAS  PubMed  Google Scholar 

  • Terrazas-Salgado L, García-Gasca A, Betancourt-Lozano M, Llera-Herrera R, Alvarado-Cruz I, Yáñez-Rivera B (2022) Epigenetic transgenerational modifications induced by xenobiotic exposure in zebrafish. Frontiers in Cell and Developmental Biology 10:832982. https://doi.org/10.3389/fcell.2022.832982

    Article  PubMed  PubMed Central  Google Scholar 

  • Tian H, Ru S, Wang Z, Cai W, Wang W (2009) Estrogenic effects of monocrotophos evaluated by vitellogenin mRNA and protein induction in male goldfish (Carassius auratus). Comp Biochem Physiol C Toxicol Pharmacol 150:231–236

    Article  PubMed  Google Scholar 

  • Tian H, Sun Y, Wang H, Bing X, Wang W, Ru S (2017) Monocrotophos pesticide affects synthesis and conversion of sex steroids through multiple targets in male goldfish (Carassius auratus). Sci Rep 7:2306. https://doi.org/10.1038/s41598-017-01935-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripurani SK, Wee G, Lee K-B, Smith GW, Wang L, Jianboyao, (2013) MicroRNA-212 post-transcriptionally regulates oocyte-specific basic-helix-loop-helix transcription factor, factor in the germline alpha (FIGLA), during bovine early embryogenesis. PLoS ONE 8:e76114. https://doi.org/10.1371/journal.pone.0076114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velmurugan B, Selvanayagam M, Cengiz EI, Unlu E (2007) The effects of monocrotophos to different tissues of freshwater fish Cirrhinus mrigala. Bull Environ Contam Toxicol 78:450–454

    Article  CAS  PubMed  Google Scholar 

  • Venney CJ, Wellband KW, Heath DD (2021) Rearing environment affects the genetic architecture and plasticity of DNA methylation in Chinook salmon. Heredity (edinb) 126:38–49

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Bryan C, Xie J, Zhao H, Lin LF, Tai, J.a.C., Horzmann, K.A., Sanchez, O.F., Zhang, M., Freeman, J.L. & Yuan, C. (2022) Atrazine exposure in zebrafish induces aberrant genome-wide methylation. Neurotoxicol Teratol 92:107091. https://doi.org/10.1016/j.ntt.2022.107091

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Bhandari RK (2020) DNA methylation reprogramming in medaka fish, a promising animal model for environmental epigenetics research. Environ Epigen 6:dvaa008. https://doi.org/10.1093/eep/dvaa008

  • Xin F, Susiarjo M, Bartolomei MS (2015) Multigenerational and transgenerational effects of endocrine disrupting chemicals: a role for altered epigenetic regulation? Semin Cell Dev Biol 43:66–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiu Y, Shao C, Zhu Y, Li Y, Gan T, Xu W, Piferrer, F, Chen S (2019) Differences in DNA methylation between disease-resistant and disease-susceptible Chinese tongue sole (Cynoglossus semilaevis) families. 10. https://doi.org/10.3389/fgene.2019.00847

  • Xu Q, Lin H-Y, Yeh S-D, Yu IC, Wang R-S, Chen Y-T, Zhang C, Altuwaijri S, Chen L-M, Chuang K-H, Chiang H-S, Yeh S, Chang C (2007) Infertility with defective spermatogenesis and steroidogenesis in male mice lacking androgen receptor in Leydig cells. Endocrine 32:96–106

    Article  CAS  PubMed  Google Scholar 

  • Xu N, Chua AK, Jiang H, Liu N-A, Goodarzi MO (2014) Early embryonic androgen exposure induces transgenerational epigenetic and metabolic changes. Mol Endocrinol 28:1329–1336

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang J, Liu M, Zhou T, Li Q, Lin Z (2023) Transcriptome and methylome dynamics in the gills of large yellow croaker (Larimichthys crocea) during low-salinity adaption. 10. https://doi.org/10.3389/fmars.2023.1082655

  • Yi SV (2017) Insights into epigenome evolution from animal and plant methylomes. Genome Biol Evol 9:3189–3201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yilmaz O, Patinote A, Nguyen T, Com E, Pineau C, Bobe J (2019) Genome Editing Reveals Reproductive and Developmental Dependencies on Specific Types of Vitellogenin in Zebrafish (danio Rerio) 86:1168–1188. https://doi.org/10.1002/mrd.23231

    Article  CAS  Google Scholar 

  • Yu Y, Han Y, Niu R, Wang J, Manthari RK, Ommati MM, Sun Z (2018) Ameliorative effect of VE, IGF-I, and hCG on the fluoride-induced testosterone release suppression in mice Leydig cells. Biol Trace Elem Res 181:95–103

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Gao L, Yang K, Tian H, Wang W, Ru S (2013) Monocrotophos pesticide modulates the expression of sexual differentiation genes and causes phenotypic feminization in zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 157:33–40

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Guan Y, Wang S, Wang L, Cheng M, Yuan C, Liu Y, Wang Z (2018a) Bisphenol A induced abnormal DNA methylation of ovarian steroidogenic genes in rare minnow Gobiocypris rarus. Gen Comp Endocrinol 269:156–165

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Liu W, Wang J, Tian H, Wang W, Ru S (2018b) Quantitative analysis of in-vivo responses of reproductive and thyroid endpoints in male goldfish exposed to monocrotophos pesticide. Comp Biochem Physiol C: Toxicol Pharmacol 211:41–47

    CAS  PubMed  Google Scholar 

  • Zhao F, Wang B, Zhang X, Tian H, Wang W, Ru S (2015) Induction of DNA base damage and strand breaks in peripheral erythrocytes and the underlying mechanism in goldfish (Carassius auratus) exposed to monocrotophos. Fish Physiol Biochem 41:613–624

    Article  CAS  PubMed  Google Scholar 

  • Zhao F, Wei P, Wang J, Yu M, Zhang X, Tian H, Wang W, Ru S (2017) Estrogenic effects associated with bisphenol a exposure in male zebrafish (Danio rerio) is associated with changes of endogenous 17β-estradiol and gene specific DNA methylation levels. Gen Comp Endocrinol 252:27–35

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Zhuang Z-X, Sun Y-Q, Chen Q, Zheng X-Y, Liang Y-T, Mahboob S, Wang Q, Zhang R, Al-Ghanim KA, Shao C-W, Li Y-J (2019) Changes in DNA methylation during epigenetic-associated sex reversal under low temperature in Takifugu rubripes. PLoS ONE 14:e0221641. https://doi.org/10.1371/journal.pone.0221641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Zhang D, Liu X, Yu G, Cai X, Xu C, Rong F, Ouyang G, Wang J, Xiao W (2019) Zebrafish prmt5 arginine methyltransferase is essential for germ cell development. Development 146. https://doi.org/10.1242/dev.179572

Download references

Acknowledgements

The authors are thankful to the Director, Indian Council of Agricultural Research-CIFA, Bhubaneswar, Odisha, India, for providing the research facility and the Director, Indian Council of Agricultural Research-CIFE, Mumbai, for providing the facility for data analysis.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: J.K.S; Methodology: J.K.S, K.D.R, R.K, S.M, P.V.K, S.S; Investigation: K.D.R, J.K.S; Data processing: K.D.R, M.V; Writing—original draft preparation: K.D.R, S.R, M.V, J.K.S, P.V.K; Writing—review and editing: K.D.R, S.R, J.K.S, M.V; Result validation: K.D.R, A.A, D.D, P.A, S.S; Resources: J.K.S, K.D.R; Supervision: J.K.S.

Corresponding author

Correspondence to Jitendra Kumar Sundaray.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics Approval and Consent to Participate

All the animals used for this study approved and signed an informed consent agreement form by the Institute Animal Ethics Committee of ICAR-CIFA, Bhubaneswar, Odisha, India.

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasal, K.D., Mohapatra, S., Kumar, P.V. et al. DNA Methylation Profiling of Ovarian Tissue of Climbing Perch (Anabas testudienus) in Response to Monocrotophos Exposure. Mar Biotechnol 25, 1123–1135 (2023). https://doi.org/10.1007/s10126-023-10264-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-023-10264-x

Keywords

Navigation