Skip to main content
Log in

Three-Dimensional Spaces Where All Bounded Chebyshev Sets Are Monotone Path Connected

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

In a three-dimensional normed space \(X\), any bounded Chebyshev set is monotone path connected if and only if one of the following two conditions holds: (1) the set of extreme points of the sphere in the dual space is dense in this sphere; (2) \(X=Y\oplus_\infty \mathbb R\) (i.e., the unit sphere of \(X\) is a cylinder).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. V. Efimov and S. B. Stechkin, “Some properties of Chebyshev sets,” Dokl. Akad. Nauk SSSR 118 (1), 17–19 (1958).

    MathSciNet  MATH  Google Scholar 

  2. I. G. Tsar’kov, “Bounded Chebyshev sets in finite-dimensional Banach spaces,” Math. Notes 36 (1), 530–537 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  3. I. G. Tsar’kov, “Compact and weakly compact Chebyshev sets in linear normed spaces,” Proc. Steklov Inst. Math. 189, 199–215 (1990).

    MATH  Google Scholar 

  4. A. L. Brown, “Chebyshev sets and the shapes of convex bodies,” in Methods of Functional Analysis in Approximation Theory, Internat. Schriftenreihe Numer. Math., Bombay, 1985 (Birkhäuser, Basel, 1986), Vol. 76, pp. 97–121.

    Google Scholar 

  5. A. R. Alimov, “Connectedness of suns in the space \(c_0\),” Izv. Math. 69 (4), 651–666 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  6. V. I. Berdyshev, “To the question of Chebyshev sets,” Dokl. Akad. Nauk SSSR 22 (9), 3–5 (1966).

    Google Scholar 

  7. A. Brøndsted, “Convex sets and Chebyshev sets. II,” Math. Scand. 18, 5–15 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  8. R. R. Phelps, “A representation theorem for bounded convex sets,” Proc. Amer. Math. Soc. 11, 976–983 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  9. I. G. Tsar’kov, “Continuity of the metric projection, structural and approximate properties of sets,” Math. Notes 47 (2), 218–227 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. L. Brown, “Chebyshev sets and facial systems of convex sets in finite-dimensional spaces,” Proc. London Math. Soc. (3) 41 (2), 297–339 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  11. L. P. Vlasov, “Approximative properties of sets in normed linear spaces,” Russian Math. Surveys 28 (6), 1–66 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  12. V. S. Balaganskii and L. P. Vlasov, “The problem of convexity of Chebyshev sets,” Russian Math. Surveys 51 (6), 1127–1190 (1996).

    Article  MathSciNet  Google Scholar 

  13. A. R. Alimov, “Is any Chebyshev set convex?,” Mat. Prosveshchenie 3 (2), 155–172 (1998).

    Google Scholar 

  14. P. A. Borodin, “The convexity of \(2\)-Chebyshev sets in Hilbert space,” Moscow Univ. Math. Bull. 63 (3), 96–98 (2008).

    Article  MathSciNet  Google Scholar 

  15. P. A. Borodin, “On the convexity of \(N\)-Chebyshev sets,” Izv. Math. 75 (5), 889–914 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  16. A. R. Alimov, “Monotone path-connectedness of Chebyshev sets in the space \(C(Q)\),” Sb. Math. 197 (9), 1259–1272 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  17. A. R. Alimov, “The convexity of bounded Chebyshev sets in finite-dimensional spaces with asymmetric norm,” Izv. Saratov. Univ. Nov. Ser. Ser. Mat. Mekh. Inform. 14 (4 (2)), 489–497 (2014).

    Article  MATH  Google Scholar 

  18. A. R. Alimov, “Convexity and monotone linear connectivity of sets with a continuous metric projection in three-dimensional spaces,” in Trudy Inst. Mat. Mekh. UrO RAN (2020), Vol. 26, pp. 28–46.

    Google Scholar 

  19. B. B. Bednov, “Finite-Dimensional spaces where the class of Chebyshev sets coincides with the class of closed and monotone path-connected sets,” Math. Notes 111 (4), 505–514 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  20. I. G. Tsar’kov, “Properties of monotone path-connected sets,” Izv. Math. 85 (2), 306–331 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  21. A. R. Alimov, “Monotone path-connectedness of strict suns,” Lobachevskii J. Math. 43 (3), 519–527 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  22. A. R. Alimov and B. B. Bednov, “Monotone path-connectedness of Chebyshev sets in three-dimensional spaces,” Sb. Math. 212 (5), 636–654 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  23. L. Hetzelt, “On suns and cosuns in finite-dimensional normed real vector spaces,” Acta Math. Hungar. 45 (1–2), 53–68 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  24. R. Phelps, Convex Functions, Monotone Operators and Differentiability, in Lecture Notes in Math. (Springer- Verlag, Berlin, 1993), Vol. 1364.

    MATH  Google Scholar 

Download references

Acknowledgments

The author is grateful to P. A. Borodin and I. G. Tsar’kov for attention and valuable comments.

Funding

This work was financially supported by the Russian Science Foundation, project 22-21-00415, https://rscf.ru/en/project/22-21-00415/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. B. Bednov.

Additional information

Translated from Matematicheskie Zametki, 2023, Vol. 114, pp. 323–338 https://doi.org/10.4213/mzm13569.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bednov, B.B. Three-Dimensional Spaces Where All Bounded Chebyshev Sets Are Monotone Path Connected. Math Notes 114, 283–295 (2023). https://doi.org/10.1134/S0001434623090018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434623090018

Keywords

Navigation