Skip to main content
Log in

A probabilistic meta-heuristic optimisation algorithm for image multi-level thresholding

  • Letter
  • Published:
Genetic Programming and Evolvable Machines Aims and scope Submit manuscript

Abstract

The spread of the Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) which causes CoronaVirus Disease 2019 (COVID-19) has challenged many countries. To curb the effect of the pandemic requires the development of low-cost and rapid tools for detecting and diagnosing the patients. In this regard, chest X-ray scan images provide a reliable way of detecting the patients. One limitation, however, is the need for experts to analyse the images and identify the cases which can be a burden, when a large number of images are to be processed. The aim of this paper is to propose a method to extract rapidly, from the X-ray images, the regions in which there exist indications of COVID-19 infection. To identify the regions, image segmentation is required which is performed in this paper with a novel optimization algorithm. The proposed optimization algorithm uses probabilistic representation for the solutions. To improve the optimization process, we propose a diversity preserving operator. For multi-level image thresholding via optimization algorithms, different fitness functions have been proposed in the literature. In the proposed method in this paper, we use three fitness functions to benefit from the advantages of all. A fitness swapping scheme is proposed which swaps between the fitness functions in the optimization process. Also, a diversity preserving operator is proposed in this paper which compares the individuals and reinitializes the similar ones to inject diversity in the population. The proposed algorithm is tested on a number of COVID-19 benchmark images and experimental analysis suggest better performance for the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. M.-H. Tayarani, Applications of artificial intelligence in battling against COVID-19: a literature review. Chaos, Solitons Fractals 142, 110338 (2021). https://doi.org/10.1016/j.chaos.2020.110338

    Article  MathSciNet  Google Scholar 

  2. C.S. Guan, Z.B. Lv, S. Yan, Y.N. Du, H. Chen, L.G. Wei, R.M. Xie, B.D. Chen, Imaging features of coronavirus disease, imaging features of coronavirus disease 2019 (COVID-19): evaluation on thin-section CT. Acad. Radiol. 27, 609–613 (2019)

    Article  Google Scholar 

  3. A. Aksac, T. Ozyer, R. Alhajj, Complex networks driven salient region detection based on superpixel segmentation. Pattern Recogn. 66, 268–279 (2017)

    Article  Google Scholar 

  4. B.N. Narayanan, R.C. Hardie, T.M. Kebede, M.J. Sprague, Optimized feature selection-based clustering approach for computer-aided detection of lung nodules in different modalities. Pattern Anal. Appl. 22(2), 559–571 (2019)

    Article  MathSciNet  Google Scholar 

  5. J. Han, C. Yang, X. Zhou, W. Gui, A new multi-threshold image segmentation approach using state transition algorithm. Appl. Math. Model. 44, 588–601 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Z. Li, Q. Chen, V. Koltun, Interactive image segmentation with latent diversity, in Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR) (2018)

  7. S.S. Chouhan, A. Kaul, U.P. Singh, Image segmentation using computational intelligence techniques. Arch. Comput. Methods Eng. 26(3), 533–596 (2019)

    Article  MathSciNet  Google Scholar 

  8. P. Prathusha, S. Jyothi, A novel edge detection algorithm for fast and efficient image segmentation, in Data Engineering and Intelligent Computing (Springer, 2018) pp. 283–291

  9. J. Kuruvilla, D. Sukumaran, A. Sankar, S.P. Joy, A review on image processing and image segmentation, in International Conference on Data Mining and Advanced Computing (SAPIENCE)(IEEE, 2016) pp. 198–203

  10. D. Oliva, E. Cuevas, G. Pajares, D. Zaldivar, V. Osuna, A multilevel thresholding algorithm using electromagnetism optimization. Neurocomputing 139, 357–381 (2014)

    Article  Google Scholar 

  11. S. Arora, J. Acharya, A. Verma, P.K. Panigrahi, Multilevel thresholding for image segmentation through a fast statistical recursive algorithm. Pattern Recogn. Lett. 29(2), 119–125 (2008)

    Article  Google Scholar 

  12. L. Chen, L. Guo, N. Yang, Y. Du, Multi-level image thresholding based on histogram voting, in 2009 2nd International Congress on Image and Signal Processing (2009) pp. 1–5

  13. L. Li, R. Gong, W. Chen, Gray level image thresholding based on fisher linear projection of two-dimensional histogram. Pattern Recogn. 30(5), 743–749 (1997)

    Article  Google Scholar 

  14. D.-Y. Huang, C.-H. Wang, Optimal multi-level thresholding using a two-stage Otsu optimization approach. Pattern Recogn. Lett. 30(3), 275–284 (2009)

    Article  Google Scholar 

  15. P.-Y. Yin, T.-H. Wu, Multi-objective and multi-level image thresholding based on dominance and diversity criteria. Appl. Soft Comput. 54, 62–73 (2017)

    Article  Google Scholar 

  16. H. Mittal, M. Saraswat, An optimum multi-level image thresholding segmentation using non-local means 2d histogram and exponential Kbest gravitational search algorithm. Eng. Appl. Artif. Intell. 71, 226–235 (2018)

    Article  Google Scholar 

  17. M. Ali, C.W. Ahn, M. Pant, Multi-level image thresholding by synergetic differential evolution. Appl. Soft Comput. 17, 1–11 (2014)

    Article  Google Scholar 

  18. S. Sarkar, S. Paul, R. Burman, S. Das, S.S. Chaudhuri, A fuzzy entropy based multi-level image thresholding using differential evolution, in Swarm, Evolutionary, and Memetic Computing. ed. by B.K. Panigrahi, P.N. Suganthan, S. Das (Springer International Publishing, 2015), pp.386–395

    Chapter  Google Scholar 

  19. R. Burman, S. Paul, S. Das, A differential evolution approach to multi-level image thresholding using type ii fuzzy sets, in Swarm, Evolutionary, and Memetic Computing. ed. by B.K. Panigrahi, P.N. Suganthan, S. Das, S.S. Dash (Springer, 2013), pp.274–285

    Chapter  Google Scholar 

  20. M. Tayarani N., M. Akbarzadeh T, A cellular structure and diversity preserving operator in quantum evolutionary algorithms, in 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence) (2008) pp. 2665–2670. https://doi.org/10.1109/CEC.2008.4631156

  21. K.-H. Han, J.-H. Kim, Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Trans. Evol. Comput. 6(6), 580–593 (2002)

    Article  Google Scholar 

  22. M. Tayarani, A. Esposito, A. Vinciarelli, What an“ehm" leaks about you: mapping fillers into personality traits with quantum evolutionary feature selection algorithms. IEEE Trans. Affect. Comput. 13(1), 108–121 (2022). https://doi.org/10.1109/TAFFC.2019.2930695

    Article  Google Scholar 

  23. A.S. Abutaleb, Automatic thresholding of gray-level pictures using two-dimensional entropy. Comput. Vis. Graph. Image Process. 47(1), 22–32 (1989)

    Article  Google Scholar 

  24. F. Breve, Interactive image segmentation using label propagation through complex networks. Expert Syst. Appl. 123, 18–33 (2019)

    Article  Google Scholar 

  25. P. Prathusha, S. Jyothi, A novel edge detection algorithm for fast and efficient image segmentation, in Data Engineering and Intelligent Computing. ed. by S.C. Satapathy, V. Bhateja, K.S. Raju, B. Janakiramaiah (Springer Singapore, Singapore, 2018), pp.283–291

    Chapter  Google Scholar 

  26. B.N. Narayanan, R.C. Hardie, T.M. Kebede, M.J. Sprague, Optimized feature selection-based clustering approach for computer-aided detection of lung nodules in different modalities. Pattern Anal. Appl. 22, 559–571 (2019)

    Article  MathSciNet  Google Scholar 

  27. R.L. Kirby, A. Rosenfeld, A note on the use of (gray level, local average gray level) space as an aid in threshold selection Tech. Rep. (Maryland Univ College Park Computer Science Center, 1979)

  28. M.-H. Tayarani-N, X. Yao, H. Xu, Meta-heuristic algorithms in car engine design: a literature survey. IEEE Trans. Evolut. Comput. 19(5), 609–629 (2015). https://doi.org/10.1109/TEVC.2014.2355174

    Article  Google Scholar 

  29. M. Abdel-Basset, R. Mohamed, M. Elhoseny, R.K. Chakrabortty, M. Ryan, A hybrid COVID-19 detection model using an improved marine predators algorithm and a ranking-based diversity reduction strategy. IEEE Access 8, 79521–79540 (2020). https://doi.org/10.1109/ACCESS.2020.2990893

    Article  Google Scholar 

  30. S. Gupta, K. Deep, Improved sine cosine algorithm with crossover scheme for global optimization. Knowl-Based Syst. 165, 374–406 (2019). https://doi.org/10.1016/j.knosys.2018.12.008

    Article  Google Scholar 

  31. X. Bao, H. Jia, C. Lang, A novel hybrid Harris hawks optimization for color image multilevel thresholding segmentation. IEEE Access 7, 76529–76546 (2019). https://doi.org/10.1109/ACCESS.2019.2921545

    Article  Google Scholar 

  32. D. Zhao, L. Liu, F. Yu, A.A. Heidari, M. Wang, G. Liang, K. Muhammad, H. Chen, Chaotic random spare ant colony optimization for multi-threshold image segmentation of 2d Kapur entropy. Knowl.-Based Syst. 216, 106510 (2021). https://doi.org/10.1016/j.knosys.2020.106510

    Article  Google Scholar 

  33. S. Dey, S. Bhattacharyya, U. Maulik, New quantum inspired meta-heuristic techniques for multi-level colour image thresholding. Appl. Soft Comput. 46, 677–702 (2016)

    Article  Google Scholar 

  34. A. Marciniak, M. Kowal, P. Filipczuk, J. Korbicz, Swarm intelligence algorithms for multi-level image thresholding, in Intelligent Systems in Technical and Medical Diagnostics. ed. by J. Korbicz, M. Kowal (Springer, Berlin, Heidelberg, 2014), pp.301–311

    Chapter  Google Scholar 

  35. X. Yue, H. Zhang, A multi-level image thresholding approach using Otsu based on the improved invasive weed optimization algorithm. SIViP 14(3), 575–582 (2020)

    Article  Google Scholar 

  36. S.C. Satapathy, N.S.M. Raja, V. Rajinikanth, A.S. Ashour, N. Dey, Multi-level image thresholding using Otsu and chaotic bat algorithm. Neural Comput. Appl. 29(12), 1285–1307 (2018)

    Article  Google Scholar 

  37. M.A. Elaziz, A.A. Heidari, H. Fujita, H. Moayedi, A competitive chain-based Harris hawks optimizer for global optimization and multi-level image thresholding problems. Appl. Soft Comput. 95, 106347 (2020)

    Article  Google Scholar 

  38. S. Nabizadeh, K. Faez, S. Tavassoli, A. Rezvanian, A novel method for multi-level image thresholding using particle swarm optimization algorithms, in 2010 2nd International Conference on Computer Engineering and Technology Vol. 4 (2010) pp. V4-271–V4-275

  39. F.D. Martino, S. Sessa, PSO image thresholding on images compressed via fuzzy transforms. Inf. Sci. 506, 308–324 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  40. S. Sarkar, S. Das, S.S. Chaudhuri, A multilevel color image thresholding scheme based on minimum cross entropy and differential evolution. Pattern Recogn. Lett. 54, 27–35 (2015)

    Article  Google Scholar 

  41. S. Sarkar, S. Das, S.S. Chaudhuri, Hyper-spectral image segmentation using rényi entropy based multi-level thresholding aided with differential evolution. Expert Syst. Appl. 50, 120–129 (2016)

    Article  Google Scholar 

  42. S. Sarkar, S. Das, Multilevel image thresholding based on 2d histogram and maximum tsallis entropy—a differential evolution approach. IEEE Trans. Image Process. 22(12), 4788–4797 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. L. Shen, C. Fan, X. Huang, Multi-level image thresholding using modified flower pollination algorithm. IEEE Access 6, 30508–30519 (2018)

    Article  Google Scholar 

  44. B. Abhinaya, N. Sri Madhava Raja, Solving multi-level image thresholding problem-an analysis with cuckoo search algorithm, in Information Systems Design and Intelligent Applications. ed. by J.K. Mandal, S.C. Satapathy, M. Kumar Sanyal, P.P. Sarkar, A. Mukhopadhyay (Springer, New Delhi, 2015), pp.177–186

    Chapter  Google Scholar 

  45. V. Rajinikanth, N. Sri Madhava Raja, S.C. Satapathy, Robust color image multi-thresholding using between-class variance and cuckoo search algorithm, in Information Systems Design and Intelligent Applications. ed. by S.C. Satapathy, J.K. Mandal, S.K. Udgata, V. Bhateja (Springer, New Delhi, 2016), pp.379–386

    Chapter  Google Scholar 

  46. J.H. Holland, Adaption in Natural and Artificial Systems, 1st edn. (1975)

  47. L. Deng, S. Wang, L. Qiao, B. Zhang, DE-RCO: rotating crossover operator with multiangle searching strategy for adaptive differential evolution. IEEE Access 6, 2970–2983 (2018)

    Article  Google Scholar 

  48. D. Molina, M. Lozano, A. Sanchez, F. Herrera, Memetic algorithms based on local search chains for large scale continuous optimisation problems: MA-SSW-chains. Soft. Comput. 15, 2201–2220 (2011)

    Article  Google Scholar 

  49. E. Mininno, F. Cupertino, D. Naso, Real-valued compact genetic algorithms for embedded microcontroller optimization. IEEE Trans. Evol. Comput. 12(2), 203–219 (2008)

    Article  Google Scholar 

  50. Y. Chen, M. Wang, A.A. Heidari, B. Shi, Z. Hu, Q. Zhang, H. Chen, M. Mafarja, H. Turabieh, Multi-threshold image segmentation using a multi-strategy shuffled frog leaping algorithm. Expert Syst. Appl. 194, 116511 (2022). https://doi.org/10.1016/j.eswa.2022.116511

    Article  Google Scholar 

  51. A. Qi, D. Zhao, F. Yu, A.A. Heidari, Z. Wu, Z. Cai, F. Alenezi, R.F. Mansour, H. Chen, M. Chen, Directional mutation and crossover boosted ant colony optimization with application to COVID-19 X-ray image segmentation. Comput. Biol. Med. 148, 105810 (2022). https://doi.org/10.1016/j.compbiomed.2022.105810

    Article  Google Scholar 

  52. E. Alba, B. Dorronsoro, The exploration/exploitation tradeoff in dynamic cellular genetic algorithms. IEEE Trans. Evol. Comput. 9(2), 126–142 (2005). https://doi.org/10.1109/TEVC.2005.843751

    Article  Google Scholar 

  53. A. Dirami, K. Hammouche, M. Diaf, P. Siarry, Fast multilevel thresholding for image segmentation through a multiphase level set method. Signal Process. 93(1), 139–153 (2013)

    Article  Google Scholar 

  54. J. Kapur, P. Sahoo, A. Wong, A new method for gray-level picture thresholding using the entropy of the histogram. Comput. Vis. Graph. Image Process. 29(3), 273–285 (1985)

    Article  Google Scholar 

  55. N. Otsu, A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  Google Scholar 

  56. M.H. Tayarani-N, M. Akbarzadeh-T, Improvement of the performance of the quantum-inspired evolutionary algorithms: structures, population, operators. Evol. Intel. 7(4), 219–239 (2014)

    Google Scholar 

  57. M.-H. Tayaran-Najaran, M.-R. Akbarzadeh-Tootounchi, Probabilistic optimization algorithms for real-coded problems and its application in Latin hypercube problem. Expert Syst. Appl. 160, 113589 (2020)

    Article  Google Scholar 

  58. M.H.T. Najaran, M.R.A. Tootounchi, Probabilistic optimization algorithms for real-coded problems and its application in Latin hypercube problem. Expert Syst. Appl. 160, 113589 (2020)

    Article  Google Scholar 

  59. M.-H. Tayarani-N, Novel operators for quantum evolutionary algorithm in solving timetabling problem. Evol. Intel. 14(4), 1869–1893 (2021)

    Article  Google Scholar 

  60. M.H.T. Najaran, How to exploit fitness landscape properties of timetabling problem: a new operator for quantum evolutionary algorithm. Expert Syst. Appl. 168, 114211 (2021). https://doi.org/10.1016/j.eswa.2020.114211

    Article  Google Scholar 

  61. J. P. Cohen, P. Morrison, L. Dao, COVID-19 image data collection. Preprint at arXiv:2003.11597. https://github.com/ieee8023/covid-chestxray-dataset

  62. A. Hore, D. Ziou, Image quality metrics: PSNR vs. SSIM, in 2010 20th international conference on pattern recognition (2010) pp. 2366–2369

  63. J. P. Cohen, P. Morrison, L. Dao, COVID-19 image data collection, github, Preprint at arXiv:2003.11597. https://github.com/ieee8023/covid-chestxray-dataset

  64. T. Rahman, M. Chowdhury, A. Khandakar, Covid-19 radiography database, kaggle. https://www.kaggle.com/tawsifurrahman/covid19-radiography-database/data

  65. A. Ahmed, Pneumonia sample X-rays, github. https://www.kaggle.com/ahmedali2019/pneumonia-sample-xrays

  66. M.-H. Tayarani-N, A. Prugel-Bennett, Quadratic assignment problem: a landscape analysis. Evol. Intel. 8(4), 165–184 (2015)

    Article  Google Scholar 

  67. M. Tayarani-N, A. Prugel-Bennett, On the landscape of combinatorial optimization problems. IEEE Trans. Evolut. Comput. 18(3), 420–434 (2014)

    Article  Google Scholar 

  68. M.-H. Tayarani-N, A. Prugel-Bennett, Anatomy of the fitness landscape for dense graph-colouring problem. Swarm Evolut. Comput. 22, 47–65 (2015)

    Article  Google Scholar 

  69. M.-H. Tayarani-N, A. Prugel-Bennett, An analysis of the fitness landscape of travelling salesman problem. Evol. Comput. 24(2), 347–384 (2016). (pMID: 26066806)

    Article  Google Scholar 

Download references

Funding

There is no funding source to report.

Author information

Authors and Affiliations

Authors

Contributions

M- HT- N is the sole author of this paper.

Corresponding author

Correspondence to Mohammad Hassan Tayarani Najaran.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

I will conduct myself with integrity, fidelity, and honesty. I will openly take responsibility for my actions, and only make agreements, which I intend to keep. I will not intentionally engage in or participate in any form of malicious harm to another person or animal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper was handled by Area Editor for Life Sciences Ting Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najaran, M.H.T. A probabilistic meta-heuristic optimisation algorithm for image multi-level thresholding. Genet Program Evolvable Mach 24, 14 (2023). https://doi.org/10.1007/s10710-023-09460-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10710-023-09460-4

Keywords

Navigation