Skip to main content
Log in

GCMC kernel for analyzing the pore size distribution of porous carbons based on a simplified slit-pore model considering surface energetic heterogeneity

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

For porous carbons, which typically have hierarchical structures, the pore size distribution (PSD) is one of the most important characteristics and is currently evaluated by using kernel fitting methods represented by non-local density functional theory. Herein, we present new kernels for N\(_{2}\) and Ar adsorption at 77 K and 87 K, respectively, derived from Monte Carlo (MC) simulations based on a carbon slit-pore model that considers energetic heterogeneity due to surface roughness. The model consists of a locally scaled Lennard–Jones (LJ) 10-4 potential and Steele’s 10-4-3 potential, and the scaling factors of the LJ 10-4 potential are assumed to follow a normal distribution that mimics the adsorption behavior on real carbon black. In contrast to our previous MC kernel based on Steele’s 10-4-3 potential, the local isotherms of the new kernel did not show a steep increase due to adsorption layer formation. Despite the improved fit for adsorption isotherms, PSDs obtained from the proposed kernel unfortunately show a non-negligible valley around 1 nm, which is a major artifact of the kernel fitting approach. A careful comparison of the smooth and rough surface models indicated that the definitive cause of the artifact lies not in the formation of monolayers, which was believed so far, but rather in the pore-filling behavior, which provides a major clue for constructing a completely artifact-free kernel based on molecular simulations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Bhatia, S.K.: Characterizing structural complexity in disordered carbons: From the slit pore to atomistic models. Langmuir 33(4), 831–847 (2017). https://doi.org/10.1021/acs.langmuir.6b03459

    Article  CAS  PubMed  Google Scholar 

  2. Chenoweth, K., van Duin, A.C.T., Goddard, W.A.: Reaxff reactive force field for molecular dynamics simulations of hydrocarbon oxidation. J. Phys. Chem. A 112(5), 1040–1053 (2008). https://doi.org/10.1021/jp709896w

    Article  CAS  PubMed  Google Scholar 

  3. Chihara, K., Suzuki, M.: Control of micropore diffusivities of molecular sieving carbon by deposition of hydrocarbons. Carbon 17(4), 339–343 (1979). https://doi.org/10.1016/0008-6223(79)90006-X

    Article  CAS  Google Scholar 

  4. Dollimore, D., Heal, G.R.: An improved method for the calculation of pore size distribution from adsorption data. J. Appl. Chem. 14(3), 109–114 (1964). https://doi.org/10.1002/jctb.5010140302

    Article  CAS  Google Scholar 

  5. Errington, J.R.: Direct calculation of liquid-vapor phase equilibria from transition matrix monte carlo simulation. J. Chem. Phys. 118(22), 9915–9925 (2003)

    Article  CAS  Google Scholar 

  6. Evans, R., Tarazona, P.: Theory of condensation in narrow capillaries. Phys. Rev. Lett. 52(7), 557–560 (1984). https://doi.org/10.1103/PhysRevLett.52.557

    Article  CAS  Google Scholar 

  7. Evans, R., Marconi, U.M.B., Tarazona, P.: Capillary condensation and adsorption in cylindrical and slit-like pores. J. Chem. Soc .Faraday Trans. Mol. Chem. Phys. 82(10), 1763–1787 (1986). https://doi.org/10.1039/F29868201763

    Article  Google Scholar 

  8. Evans, R., Marconi, U.M.B., Tarazona, P.: Fluids in narrow pores: Adsorption, capillary condensation, and critical points. J. Chem. Phys. 84(4), 2376–2399 (1986). https://doi.org/10.1063/1.450352

    Article  CAS  Google Scholar 

  9. Gauden, P.A., Terzyk, A.P., Kowalczyk, P.: Some remarks on the calculation of the pore size distribution function of activated carbons. J. Colloid Interface Sci. 300(2), 453–474 (2006). https://doi.org/10.1016/j.jcis.2006.04.017

    Article  CAS  PubMed  Google Scholar 

  10. Horvath, G., Kawazoe, K.: Method for the calculation of effective pore size distribution in molecular sieve carbon. J. Chem. Eng. Jpn 16(6), 470–475 (1983). https://doi.org/10.1252/jcej.16.470

    Article  CAS  Google Scholar 

  11. Ishida, M., Ohba, T.: Hybrid reverse molecular dynamics simulation as new approach to determination of carbon nanostructure of carbon blacks. Sci. Rep. 10(1), 3622 (2020). https://doi.org/10.1038/s41598-020-60372-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jagiello, J., Olivier, J.P.: A simple two-dimensional nldft model of gas adsorption in finite carbon pores application to pore structure analysis. J. Phys. Chem. C 113(45), 19382–19385 (2009). https://doi.org/10.1021/jp9082147

    Article  CAS  Google Scholar 

  13. Jagiello, J., Olivier, J.P.: 2d-nldft adsorption models for carbon slit-shaped pores with surface energetical heterogeneity and geometrical corrugation. Carbon 55, 70–80 (2013). https://doi.org/10.1016/j.carbon.2012.12.011

    Article  CAS  Google Scholar 

  14. Lastoskie, C., Gubbins, K.E., Quirke, N.: Pore size distribution analysis of microporous carbons: a density functional theory approach. J. Phys. Chem. 97(18), 4786–4796 (1993). https://doi.org/10.1021/j100120a035

    Article  CAS  Google Scholar 

  15. Lee, J., Kim, J., Hyeon, T.: Recent progress in the synthesis of porous carbon materials. Adv. Mater. 18(16), 2073–2094 (2006). https://doi.org/10.1002/adma.200501576

    Article  CAS  Google Scholar 

  16. Liu, B., Shioyama, H., Akita, T., et al.: Metal-organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 130(16), 5390–5391 (2008). https://doi.org/10.1021/ja7106146

    Article  CAS  PubMed  Google Scholar 

  17. Loi, Q.K., Prasetyo, L., Tan, J., et al.: Wedge pore modelling of gas adsorption in activated carbon: Consistent pore size distributions. Carbon 166, 414–426 (2020). https://doi.org/10.1016/j.carbon.2020.05.035

    Article  CAS  Google Scholar 

  18. Lucena, S.M.P., Paiva, C.A.S., Silvino, P.F.G., et al.: The effect of heterogeneity in the randomly etched graphite model for carbon pore size characterization. Carbon 48(9), 2554–2565 (2010). https://doi.org/10.1016/j.carbon.2010.03.034

    Article  CAS  Google Scholar 

  19. Lucena, S.M.P., Oliveira, J.C.A., Gonçalves, D.V., et al.: Second-generation kernel for characterization of carbonaceous material by adsorption. Carbon 119, 378–385 (2017). https://doi.org/10.1016/j.carbon.2017.04.061

    Article  CAS  Google Scholar 

  20. Lucena, S.M.P., Gonçalves, R.V., Silvino, P.F.G., et al.: Fingerprints of heterogeneities from carbon oxidative process: a reactive molecular dynamics study. Microporous Mesoporous Mater. 304, 109061 (2020). https://doi.org/10.1016/j.micromeso.2018.07.051

    Article  CAS  Google Scholar 

  21. Lucena, S.M.P., Oliveira, J.C.A., Gonçalves, D.V., et al.: Pore size analysis of carbons with heterogeneous kernels from reactive molecular dynamics model and quenched solid density functional theory. Carbon 183, 672–684 (2021). https://doi.org/10.1016/j.carbon.2021.07.059

    Article  CAS  Google Scholar 

  22. Miyahara, M.T., Tanaka, H.: Determination of phase equilibria in confined systems by open pore cell monte carlo method. J. Chem. Phys. 138(8), 084709 (2013). https://doi.org/10.1063/1.4792715

    Article  CAS  PubMed  Google Scholar 

  23. Miyahara, M.T., Numaguchi, R., Hiratsuka, T., et al.: Fluids in nanospaces: Molecular simulation studies to find out key mechanisms for engineering. Adsorption 20(2), 213–223 (2014). https://doi.org/10.1007/s10450-013-9588-2

    Article  CAS  Google Scholar 

  24. Mohamed, A.R., Mohammadi, M., Darzi, G.N.: Preparation of carbon molecular sieve from lignocellulosic biomass: A review. Renew. Sustain. Energy Rev. 14(6), 1591–1599 (2010). https://doi.org/10.1016/j.rser.2010.01.024

    Article  CAS  Google Scholar 

  25. Neimark, A.V., Vishnyakov, A.: Gauge cell method for simulation studies of phase transitions in confined systems. Phys. Rev. E 62(4), 4611–4622 (2000). https://doi.org/10.1103/PhysRevE.62.4611

    Article  CAS  Google Scholar 

  26. Neimark, A.V., Ravikovitch, P.I., Grün, M., et al.: Pore size analysis of mcm-41 type adsorbents by means of nitrogen and argon adsorption. J. Colloid Interface Sci. 207(1), 159–169 (1998). https://doi.org/10.1006/jcis.1998.5748

    Article  CAS  PubMed  Google Scholar 

  27. Neimark, A.V., Lin, Y., Ravikovitch, P.I., et al.: Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons. Carbon 47(7), 1617–1628 (2009). https://doi.org/10.1016/j.carbon.2009.01.050

    Article  CAS  Google Scholar 

  28. Nguyen, C., Do, D.D.: A New Method for the Characterization Of Porous Materials. Langmuir 15(10), 3608–3615 (1999). https://doi.org/10.1021/la981140d

    Article  CAS  Google Scholar 

  29. Nguyen, T.X., Cohaut, N., Bae, J.S., et al.: New method for atomistic modeling of the microstructure of activated carbons using hybrid reverse monte carlo simulation. Langmuir 24(15), 7912–7922 (2008). https://doi.org/10.1021/la800351d

    Article  CAS  PubMed  Google Scholar 

  30. Nishihara, H., Kyotani, T.: Templated nanocarbons for energy storage. Adv. Mater. 24(33), 4473–4498 (2012). https://doi.org/10.1002/adma.201201715

    Article  CAS  PubMed  Google Scholar 

  31. Nishihara, H., Yang, Q.H., Hou, P.X., et al.: A possible buckybowl-like structure of zeolite templated carbon. Carbon 47(5), 1220–1230 (2009). https://doi.org/10.1016/j.carbon.2008.12.040

    Article  CAS  Google Scholar 

  32. Alexandre de Oliveira, J.C., Soares Maia, D.A., Toso, J.P., et al.: Characterization of the psd of activated carbons by a heterogeneous surface mixed model. Colloids Surf. A 437, 69–75 (2013). https://doi.org/10.1016/j.colsurfa.2012.11.023

    Article  CAS  Google Scholar 

  33. Olivier, J.P., Conklin, W.B.: Mv, Szombathely: Determination of pore size distribution from density functional theory: A comparison of nitrogen and argon results. Stud. Surf. Sci. Catal. 87, 81–89 (1994). https://doi.org/10.1016/S0167-2991(08)63067-0

    Article  CAS  Google Scholar 

  34. Opletal, G., Petersen, T.C., Snook, I.K., et al.: Hrmc 2.0: Hybrid reverse monte carlo method with silicon, carbon and germanium potentials. Comput. Phys. Commun. 184(8), 1946–1957 (2013). https://doi.org/10.1016/j.cpc.2013.03.004

    Article  CAS  Google Scholar 

  35. Palmer, J.C., Brennan, J.K., Hurley, M.M., et al.: Detailed structural models for activated carbons from molecular simulation. Carbon 47(12), 2904–2913 (2009). https://doi.org/10.1016/j.carbon.2009.06.037

    Article  CAS  Google Scholar 

  36. Peterson, B.K., Gubbins, K.E.: Phase transitions in a cylindrical pore. Mol. Phys. 62(1), 215–226 (1987). https://doi.org/10.1080/00268978700102151

    Article  CAS  Google Scholar 

  37. Ravikovitch, P.I., Neimark, A.V.: Density functional theory model of adsorption on amorphous and microporous silica materials. Langmuir 22(26), 11171–11179 (2006). https://doi.org/10.1021/la0616146

    Article  CAS  PubMed  Google Scholar 

  38. Ravikovitch, P.I., Vishnyakov, A., Russo, R., et al.: Unified approach to pore size characterization of microporous carbonaceous materials from n2, ar, and co2 adsorption isotherms. Langmuir 16(5), 2311–2320 (2000). https://doi.org/10.1021/la991011c

    Article  CAS  Google Scholar 

  39. Seaton, N.A., Walton, J.P.R.B.: A new analysis method for the determination of the pore size distribution of porous carbons from nitrogen adsorption measurements. Carbon 27(6), 853–861 (1989). https://doi.org/10.1016/0008-6223(89)90035-3

    Article  CAS  Google Scholar 

  40. Srinivasan, S.G., van Duin, A.C.T., Ganesh, P.: Development of a reaxff potential for carbon condensed phases and its application to the thermal fragmentation of a large fullerene. J. Phys. Chem. A 119(4), 571–580 (2015). https://doi.org/10.1021/jp510274e

    Article  CAS  PubMed  Google Scholar 

  41. Stein, A., Wang, Z., Fierke, M.A.: Functionalization of porous carbon materials with designed pore architecture. Adv. Mater. 21(3), 265–293 (2009). https://doi.org/10.1002/adma.200801492

    Article  CAS  Google Scholar 

  42. Tarazona, P.: Free-energy density functional for hard spheres. Phys. Rev. A 31(4), 2672–2679 (1985). https://doi.org/10.1103/PhysRevA.31.2672

    Article  CAS  Google Scholar 

  43. Thommes, M., Kaneko, K., Neimark Alexander, V., et al.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (iupac technical report). Pure Appl Chem 87(9–10), 1051 (2015). https://doi.org/10.1515/pac-2014-1117, https://www.degruyter.com/view/j/pac.2015.87.issue-9-10/pac-2014-1117/pac-2014-1117.xml

  44. Tian, W., Zhang, H., Duan, X., et al.: Porous carbons: Structure-oriented design and versatile applications. Adv. Funct. Mater. 30(17), 1909265 (2020). https://doi.org/10.1002/adfm.201909265

    Article  CAS  Google Scholar 

  45. Widom, B.: Some topics in the theory of fluids. J. Chem. Phys. 39(11), 2808–2812 (1963). https://doi.org/10.1063/1.1734110

    Article  CAS  Google Scholar 

  46. Yamane, Y., Tanaka, H., Miyahara, M.T.: In silico synthesis of carbon molecular sieves for high-performance air separation. Carbon 141, 626–634 (2019). https://doi.org/10.1016/j.carbon.2018.10.021, https://www.sciencedirect.com/science/article/pii/S0008622318309369

  47. Yoon, K., Rahnamoun, A., Swett, J.L., et al.: Atomistic-scale simulations of defect formation in graphene under noble gas ion irradiation. ACS Nano 10(9), 8376–8384 (2016). https://doi.org/10.1021/acsnano.6b03036

    Article  CAS  PubMed  Google Scholar 

  48. Yu, F., Bai, X., Liang, M., et al.: Recent progress on metal-organic framework-derived porous carbon and its composite for pollutant adsorption from liquid phase. Chem Eng J 405, 126960 (2021). https://doi.org/10.1016/j.cej.2020.126960, https://www.sciencedirect.com/science/article/pii/S1385894720330886

Download references

Acknowledgements

The authors are grateful to Mr. Funahashi for his assistance in this work. This study was financially supported by a Grant-in-Aid for Challenging Research (Pioneering) no. 21K18187 and a Grant-in-Aid for Scientific Research no. 22H01848.

Funding

This work was supported by a Grant-in-Aid for Challenging Research (Pioneering) no. 21K18187 and a Grant-in-Aid for Scientific Research no. 22H01848.

Author information

Authors and Affiliations

Authors

Contributions

SH, MTM, and SW designed this study. SH wrote the paper. HT, SH, and KY wrote the program code. KY and SH performed the molecular simulations. KN measured the experimental data. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Shotaro Hiraide or Satoshi Watanabe.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hiraide, S., Yamamoto, K., Tanaka, H. et al. GCMC kernel for analyzing the pore size distribution of porous carbons based on a simplified slit-pore model considering surface energetic heterogeneity. Adsorption 29, 387–399 (2023). https://doi.org/10.1007/s10450-023-00418-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-023-00418-7

Keywords

Navigation