Skip to main content

Advertisement

Log in

Two novel cases of biallelic SMPD4 variants with brain structural abnormalities

  • Original Article
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

Sphingomyelin phosphodiesterase 4 (SMPD4) encodes a member of the Mg2+-dependent, neutral sphingomyelinase family that catalyzes the hydrolysis of the phosphodiester bond of sphingomyelin to form phosphorylcholine and ceramide. Recent studies have revealed that biallelic loss-of-function variants of SMPD4 cause syndromic neurodevelopmental disorders characterized by microcephaly, congenital arthrogryposis, and structural brain anomalies. In this study, three novel loss-of-function SMPD4 variants were identified using exome sequencing (ES) in two independent patients with developmental delays, microcephaly, seizures, and brain structural abnormalities. Patient 1 had a homozygous c.740_741del, p.(Val247Glufs*21) variant and showed profound intellectual disability, hepatomegaly, a simplified gyral pattern, and a thin corpus callosum without congenital dysmorphic features. Patient 2 had a compound heterozygous nonsense c.2124_2125del, p.(Phe709*) variant and splice site c.1188+2dup variant. RNA analysis revealed that the c.1188+2dup variant caused exon 13 skipping, leading to a frameshift (p.Ala406Ser*6). In vitro transcription analysis using minigene system suggested that mRNA transcribed from mutant allele may be degraded by nonsense-mediated mRNA decay system. He exhibited diverse manifestations, including growth defects, muscle hypotonia, respiratory distress, arthrogryposis, insulin-dependent diabetes mellitus, sensorineural hearing loss, facial dysmorphism, and various brain abnormalities, including cerebral atrophy, hypomyelination, and cerebellar hypoplasia. Here, we review previous literatures and discuss the phenotypic diversity of SMPD4-related disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The exome sequencing data of this study is not publicly available.

References

  1. Wu BX, Clarke CJ, Hannun YA (2010) Mammalian neutral sphingomyelinases: regulation and roles in cell signaling responses. Neuromolecular Med 12(4):320–330. https://doi.org/10.1007/s12017-010-8120-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Krut O, Wiegmann K, Kashkar H, Yazdanpanah B, Kronke M (2006) Novel tumor necrosis factor-responsive mammalian neutral sphingomyelinase-3 is a C-tail-anchored protein. J Biol Chem 281(19):13784–13793. https://doi.org/10.1074/jbc.M511306200

    Article  CAS  PubMed  Google Scholar 

  3. Peeters BWA, Piet ACA, Fornerod M (2022) Generating membrane curvature at the nuclear pore: a lipid point of view. Cells-Basel 11(3):469. https://doi.org/10.3390/cells11030469

    Article  CAS  Google Scholar 

  4. Cheng LC, Baboo S, Lindsay C, Brusman L, Martinez-Bartolome S, Tapia O et al (2019) Identification of new transmembrane proteins concentrated at the nuclear envelope using organellar proteomics of mesenchymal cells. Nucleus-Phila 10(1):126–143. https://doi.org/10.1080/19491034.2019.1618175

    Article  Google Scholar 

  5. Atilla-Gokcumen GE, Muro E, Relat-Goberna J, Sasse S, Bedigian A, Coughlin ML et al (2014) Dividing cells regulate their lipid composition and localization. Cell 156(3):428–439. https://doi.org/10.1016/j.cell.2013.12.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Corcoran CA, He Q, Ponnusamy S, Ogretmen B, Huang Y, Sheikh MS (2008) Neutral sphingomyelinase-3 is a DNA damage and nongenotoxic stress-regulated gene that is deregulated in human malignancies. Mol Cancer Res 6(5):795–807. https://doi.org/10.1158/1541-7786.MCR-07-2097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Magini P, Smits DJ, Vandervore L, Schot R, Columbaro M, Kasteleijn E et al (2019) Loss of SMPD4 causes a developmental disorder characterized by microcephaly and congenital arthrogryposis. Am J Hum Genet. 105(4):689–705. https://doi.org/10.1016/j.ajhg.2019.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bijarnia-Mahay S, Somashekar PH, Kaur P, Kulshrestha S, Ramprasad VL, Murugan S et al (2021) Growth and neurodevelopmental disorder with arthrogryposis, microcephaly and structural brain anomalies caused by bi-allelic partial deletion of SMPD4 gene. J Hum Genet. https://doi.org/10.1038/s10038-021-00981-3

  9. Yamada M, Suzuki H, Shima T, Uehara T, Kosaki K (2022) A patient with compound heterozygosity of SMPD4: another example of utility of exome-based copy number analysis in autosomal recessive disorders. Am J Med Genet A 188(2):613–617. https://doi.org/10.1002/ajmg.a.62535

    Article  CAS  PubMed  Google Scholar 

  10. Ravenscroft G, Clayton JS, Faiz F, Sivadorai P, Milnes D, Cincotta R et al (2021) Neurogenetic fetal akinesia and arthrogryposis: genetics, expanding genotype-phenotypes and functional genomics. J Med Genet 58(9):609–618. https://doi.org/10.1136/jmedgenet-2020-106901

    Article  CAS  PubMed  Google Scholar 

  11. Ji W, Kong X, Yin H, Xu J, Wang X (2022) Case report: novel biallelic null variants of SMPD4 confirm its involvement in neurodevelopmental disorder with microcephaly, arthrogryposis, and structural brain anomalies. Front Genet 13:872264. https://doi.org/10.3389/fgene.2022.872264

    Article  PubMed  PubMed Central  Google Scholar 

  12. Smits DJ, Schot R, Krusy N, Wiegmann K, Utermohlen O, Mulder MT et al (2023) SMPD4 regulates mitotic nuclear envelope dynamics and its loss causes microcephaly and diabetes. Brain. https://doi.org/10.1093/brain/awad033

  13. Monies D, Abouelhoda M, Assoum M, Moghrabi N, Rafiullah R, Almontashiri N et al (2019) Lessons learned from large-scale, first-tier clinical exome sequencing in a highly consanguineous population. Am J Hum Genet 105(4):879. https://doi.org/10.1016/j.ajhg.2019.09.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Theresia KJ, Wolfgang H, Gundula G, Michael E, Alexander W, Caroline G et al (2023) Prenatal diagnosis of SMPD4 loss - a neurodevelopmental disorder with microcephaly, arthrogryposis and structural brain anomalies. Prenat Diagn 43(3):284–287. https://doi.org/10.1002/pd.6324

    Article  CAS  PubMed  Google Scholar 

  15. Watanabe K, Nakashima M, Kumada S, Mashimo H, Enokizono M, Yamada K et al (2021) Identification of two novel de novo TUBB variants in cases with brain malformations: case reports and literature review. J Hum Genet 66(12):1193–1197. https://doi.org/10.1038/s10038-021-00956-4

    Article  CAS  PubMed  Google Scholar 

  16. Miyamoto S, Nakashima M, Ohashi T, Hiraide T, Kurosawa K, Yamamoto T et al (2019) A case of de novo splice site variant in SLC35A2 showing developmental delays, spastic paraplegia, and delayed myelination. Mol Genet Genomic Med 7(8):e814. https://doi.org/10.1002/mgg3.814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Olsen ASB, Faergeman NJ (2017) Sphingolipids: membrane microdomains in brain development, function and neurological diseases. Open Biol 7(5). https://doi.org/10.1098/rsob.170069

  18. Hussain G, Wang J, Rasul A, Anwar H, Imran A, Qasim M et al (2019) Role of cholesterol and sphingolipids in brain development and neurological diseases. Lipids Health Dis 18(1):26. https://doi.org/10.1186/s12944-019-0965-z

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ferreira LF, Moylan JS, Gilliam LA, Smith JD, Nikolova-Karakashian M, Reid MB (2010) Sphingomyelinase stimulates oxidant signaling to weaken skeletal muscle and promote fatigue. Am J Physiol Cell Physiol 299(3):C552–C560. https://doi.org/10.1152/ajpcell.00065.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. De Larichaudy J, Zufferli A, Serra F, Isidori AM, Naro F, Dessalle K et al (2012) TNF-alpha- and tumor-induced skeletal muscle atrophy involves sphingolipid metabolism. Skelet Muscle 2(1):2. https://doi.org/10.1186/2044-5040-2-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cowart LA (2010) A novel role for sphingolipid metabolism in oxidant-mediated skeletal muscle fatigue. Focus on “Sphingomyelinase stimulates oxidant signaling to weaken skeletal muscle and promote fatigue”. Am J Physiol Cell Physiol 299(3):C549–C551. https://doi.org/10.1152/ajpcell.00236.2010

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Moylan JS, Smith JD, Wolf Horrell EM, McLean JB, Deevska GM, Bonnell MR et al (2014) Neutral sphingomyelinase-3 mediates TNF-stimulated oxidant activity in skeletal muscle. Redox Biol 2:910–920. https://doi.org/10.1016/j.redox.2014.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chaurasia B, Summers SA (2015) Ceramides - lipotoxic inducers of metabolic disorders. Trends Endocrinol Metab 26(10):538–550. https://doi.org/10.1016/j.tem.2015.07.006

    Article  CAS  PubMed  Google Scholar 

  24. Borodzicz S, Czarzasta K, Kuch M, Cudnoch-Jedrzejewska A (2015) Sphingolipids in cardiovascular diseases and metabolic disorders. Lipids Health Dis 14:55. https://doi.org/10.1186/s12944-015-0053-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Coblentz PD, Ahn B, Hayward LF, Yoo JK, Christou DD, Ferreira LF (2019) Small-hairpin RNA and pharmacological targeting of neutral sphingomyelinase prevent diaphragm weakness in rats with heart failure and reduced ejection fraction. Am J Physiol Lung Cell Mol Physiol 316(4):L679–LL90. https://doi.org/10.1152/ajplung.00516.2018

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhang C, Qiao S, Wu J, Xu W, Ma S, Zhao B et al (2021) A new insulin-sensitive enhancer from Silene viscidula, WPTS, treats type 2 diabetes by ameliorating insulin resistance, reducing dyslipidemia, and promoting proliferation of islet beta cells. Pharmacol Res 165:105416. https://doi.org/10.1016/j.phrs.2020.105416

    Article  CAS  PubMed  Google Scholar 

  27. Schuchman EH, Desnick RJ (2017) Types A and B Niemann-Pick disease. Mol Genet Metab 120(1-2):27–33. https://doi.org/10.1016/j.ymgme.2016.12.008

    Article  CAS  PubMed  Google Scholar 

  28. Hwang SY, Kim TH, Lee HH (2015) Neutral sphingomyelinase and breast cancer research. J Menopausal Med 21(1):24–27. https://doi.org/10.6118/jmm.2015.21.1.24

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hofmann K, Tomiuk S, Wolff G, Stoffel W (2000) Cloning and characterization of the mammalian brain-specific, Mg2+-dependent neutral sphingomyelinase. Proc Natl Acad Sci U S A 97(11):5895–5900. https://doi.org/10.1073/pnas.97.11.5895

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Clarke CJ, Wu BX, Hannun YA (2011) The neutral sphingomyelinase family: identifying biochemical connections. Adv Enzyme Regul 51(1):51–58. https://doi.org/10.1016/j.advenzreg.2010.09.016

    Article  CAS  PubMed  Google Scholar 

  31. Tomiuk S, Zumbansen M, Stoffel W (2000) Characterization and subcellular localization of murine and human magnesium-dependent neutral sphingomyelinase. J Biol Chem 275(8):5710–5717. https://doi.org/10.1074/jbc.275.8.5710

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the patient’s family for participating in this work.

Funding

This study was funded by the Japan Society for the Promotion of Science, KAKENHI (Grant number JP 20H03641 and 23H02875, JP20K08236 and JP21K06819), the Japan Agency for Medical Research and Development (AMED) (JP23ek0109549 and 23ek01099674, and 23ek0109637), the Takeda Science Foundation, and HUSM Grant-in-Aid from Hamamatsu University School of Medicine.

Author information

Authors and Affiliations

Authors

Contributions

HS and MK contributed to the conception and design of the study. Material preparation, the acquisition, and analysis of ES data were performed by SA, KW, and MN. Medical examinations were carried out by YK, KK, and EK. SA, MK, MN, and HS contributed to the drafting of the text and preparing the figures. All authors revised and commented on the manuscript.

Corresponding authors

Correspondence to Mitsuko Nakashima or Hirotomo Saitsu.

Ethics declarations

Ethics approval and consent to participate

Experimental protocols were approved by the Institutional Review Board of Hamamatsu University School of Medicine and Showa University Faculty of Medicine. Written informed consent was obtained from all participating families.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aoki, S., Watanabe, K., Kato, M. et al. Two novel cases of biallelic SMPD4 variants with brain structural abnormalities. Neurogenetics 25, 3–11 (2024). https://doi.org/10.1007/s10048-023-00737-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-023-00737-5

Keywords

Navigation