Skip to main content
Log in

A review of bacterial biofilm formation and growth: rheological characterization, techniques, and applications

  • Review Article
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

Bacterial biofilms, as viscoelastic materials, have significant implications in various fields of human life encompassing health, manufacturing, and wastewater treatment. The detailed rheological characterization of mechanical properties, viscoelastic characteristics, and shear behaviors of biofilms is crucial for both scientific insight and practical applications. This review provides an exhaustive examination of bacterial biofilm formation and growth through rheological techniques, representing a critical intersection between microbiology and materials science. It explores different rheological methods, geometries, and devices, offering a comprehensive understanding of how rheological measurements can be applied to study biofilms. The advantages, limitations, and challenges of rheological techniques are also analyzed, emphasizing the importance of choosing appropriate methods for specific applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jamal M, Ahmad W, Andleeb S, Jalil F, Imran M, Nawaz MA, Hussain T, Ali M, Rafiq M, Kamil MA (2018) Bacterial biofilm and associated infections. J Chin Med Assoc 81(1):7–11

    Google Scholar 

  2. Rivas DP, Hedgecock ND, Stebe KJ, Leheny RL (2021) Dynamic and mechanical evolution of an oil-water interface during bacterial biofilm formation. Soft Matter 17(35):8195–8210

    CAS  Google Scholar 

  3. Idrees M, Sawant S, Karodia N, Rahman A (2021) Staphylococcus aureus biofilm: morphology, genetics, pathogenesis and treatment strategies. Int J Environ Res Public Health 18(14):7602

    CAS  Google Scholar 

  4. Beckwith JK, Ganesan M, VanEpps JS, Kumar A, Solomon MJ (2022) Rheology of Candida albicans fungal biofilms. J Rheol 66(4):683–697

    CAS  Google Scholar 

  5. Stoodley P, Lewandowski Z, Boyle JD, Lappin-Scott HM (1999) Structural deformation of bacterial biofilms caused by short-term fluctuations in fluid shear: an in situ investigation of biofilm rheology. Biotechnol Bioeng 65(1):83–92

    CAS  Google Scholar 

  6. Ju Y, Ha J, Song Y, Lee D (2021) Revealing the enhanced structural recovery and gelation mechanisms of cation-induced cellulose nanofibrils composite hydrogels. Carbohyd Polym 272:118515

    CAS  Google Scholar 

  7. Lee D, Shen AQ (2021) Interfacial tension measurements in microfluidic quasi-static extensional flows. Micromachines 12(3):272

    Google Scholar 

  8. Charlton SG, White MA, Jana S, Eland LE, Jayathilake PG, Burgess JG, Chen J, Wipat A, Curtis TP (2019) Regulating, measuring, and modeling the viscoelasticity of bacterial biofilms. J Bacteriol 201(18):10–1128

    Google Scholar 

  9. Martín-Roca J, Bianco V, Alarcón F, Monnappa AK, Natale P, Monroy F, Orgaz B, López-Montero I, Valeriani C (2023) Rheology of Pseudomonas fluorescens biofilms: from experiments to predictive DPD mesoscopic modeling. J Chem Phys 10(1063/5):0131935

    Google Scholar 

  10. Chan Y, Wu XH, Chieng BW, Ibrahim NA, Then YY (2021) Superhydrophobic nanocoatings as intervention against biofilm-associated bacterial infections. Nanomaterials 11(4):1046

    CAS  Google Scholar 

  11. Funari R, Shen AQ (2022) Detection and characterization of bacterial biofilms and biofilm-based sensors. ACS sensors 7(2):347–357

    CAS  Google Scholar 

  12. Watnick P, Kolter R (2000) Biofilm, city of microbes. J Bacteriol 182(10):2675–2679

    CAS  Google Scholar 

  13. Kishen A, Haapasalo M (2010) Biofilm models and methods of biofilm assessment. Endod Top 22(1):58–78

    Google Scholar 

  14. Schilcher K, Horswill AR (2020) Staphylococcal biofilm development: structure, regulation, and treatment strategies. Microbiol Mol Biol Rev 84(3):10–1128

    Google Scholar 

  15. Flemming H-C, Neu TR, Wozniak DJ (2007) The eps matrix: the “house of biofilm cells’’. J Bacteriol 189(22):7945–7947

    CAS  Google Scholar 

  16. Nesse LL, Osland AM, Vestby LK (2023) The role of biofilms in the pathogenesis of animal bacterial infections. Microorganisms 11(3):608

    Google Scholar 

  17. Pratt LA, Kolter R (1999) Genetic analyses of bacterial biofilm formation. Curr Opin Microbiol 2(6):598–603

    CAS  Google Scholar 

  18. Toyofuku M, Inaba T, Kiyokawa T, Obana N, Yawata Y, Nomura N (2016) Environmental factors that shape biofilm formation. Biosci Biotechnol Biochem 80(1):7–12

    CAS  Google Scholar 

  19. Donlan RM (2001) Biofilm formation: a clinically relevant microbiological process. Clin Infect Dis 33(8):1387–1392

    CAS  Google Scholar 

  20. Kovach KN, Fleming D, Wells MJ, Rumbaugh KP, Gordon VD (2020) Specific disruption of established pseudomonas aeruginosa biofilms using polymer-attacking enzymes. Langmuir 36(6):1585–1595

    CAS  Google Scholar 

  21. Jana S, Charlton SG, Eland LE, Burgess JG, Wipat A, Curtis TP, Chen J (2020) Nonlinear rheological characteristics of single species bacterial biofilms. NPJ Biofilms Microbiomes 6(1):19

    CAS  Google Scholar 

  22. Lieleg O, Caldara M, Baumgärtel R, Ribbeck K (2011) Mechanical robustness of pseudomonas aeruginosa biofilms. Soft Matter 7(7):3307–3314

    CAS  Google Scholar 

  23. Tolker-Nielsen T, Brinch UC, Ragas PC, Andersen JB, Jacobsen CS, Molin S (2000) Development and dynamics of Pseudomonas sp. biofilms. J Bacteriol 182(22):6482–6489

    CAS  Google Scholar 

  24. Ido N, Lybman A, Hayet S, Azulay DN, Ghrayeb M, Liddawieh S, Chai L (2020) Bacillus subtilis biofilms characterized as hydrogels. Insights on water uptake and water binding in biofilms. Soft Matter 16(26):6180–6190

    CAS  Google Scholar 

  25. Tallawi M, Opitz M, Lieleg O (2017) Modulation of the mechanical properties of bacterial biofilms in response to environmental challenges. Biomater Sci 5(5):887–900

    CAS  Google Scholar 

  26. Rogers S, Van Der Walle C, Waigh T (2008) Microrheology of bacterial biofilms in vitro: Staphylococcus aureus and pseudomonas aeruginosa. Langmuir 24(23):13549–13555

    CAS  Google Scholar 

  27. Kundukad B, Seviour T, Liang Y, Rice SA, Kjelleberg S, Doyle PS (2016) Mechanical properties of the superficial biofilm layer determine the architecture of biofilms. Soft Matter 12(26):5718–5726

    CAS  Google Scholar 

  28. Secchi E, Savorana G, Vitale A, Eberl L, Stocker R, Rusconi R (2022) The structural role of bacterial eDNA in the formation of biofilm streamers. Proc Natl Acad Sci 119(12):e2113723119

    CAS  Google Scholar 

  29. Geisel S, Secchi E, Vermant J (2022) Experimental challenges in determining the rheological properties of bacterial biofilms. Interface Focus 12(6):20220032

    Google Scholar 

  30. Kovach K, Davis-Fields M, Irie Y, Jain K, Doorwar S, Vuong K, Dhamani N, Mohanty K, Touhami A, Gordon VD (2017) Evolutionary adaptations of biofilms infecting cystic fibrosis lungs promote mechanical toughness by adjusting polysaccharide production. npj Biofilms Microbiomes 3(1):1

    Google Scholar 

  31. Rahman MU, Fleming DF, Sinha I, Rumbaugh KP, Gordon VD, Christopher GF (2021) Effect of collagen and eps components on the viscoelasticity of pseudomonas aeruginosa biofilms. Soft Matter 17(25):6225–6237

    CAS  Google Scholar 

  32. Zhang R, Ni L, Jin Z, Li J, Jin F (2014) Bacteria slingshot more on soft surfaces. Nat Commun 5(1):5541

    CAS  Google Scholar 

  33. Yan J, Bassler BL (2019) Surviving as a community: antibiotic tolerance and persistence in bacterial biofilms. Cell Host Microbe 26(1):15–21

    CAS  Google Scholar 

  34. Rahman MU, Fleming DF, Wang L, Rumbaugh KP, Gordon VD, Christopher GF (2022) Microrheology of pseudomonas aeruginosa biofilms grown in wound beds. npj Biofilms Microbiomes 8(1):49

    CAS  Google Scholar 

  35. Feng G, Cheng Y, Wang S-Y, Borca-Tasciuc DA, Worobo RW, Moraru CI (2015) Bacterial attachment and biofilm formation on surfaces are reduced by small-diameter nanoscale pores: how small is small enough? NPJ Biofilms Microbiomes 1(1):1–9

    Google Scholar 

  36. Körstgens V, Flemming H-C, Wingender J, Borchard W (2001) Uniaxial compression measurement device for investigation of the mechanical stability of biofilms. J Microbiol Methods 46(1):9–17

    Google Scholar 

  37. Körstgens V, Flemming H-C, Wingender J, Borchard W (2001) Influence of calcium ions on the mechanical properties of a model biofilm of mucoid pseudomonas aeruginosa. Water Sci Technol 43(6):49–57

    Google Scholar 

  38. Łysik D, Deptuła P, Chmielewska S, Skłodowski K, Pogoda K, Chin L, Song D, Mystkowska J, Janmey PA, Bucki R (2022) Modulation of biofilm mechanics by DNA structure and cell type. ACS Biomater Sci Eng 8(11):4921–4929

    Google Scholar 

  39. Jerabek M, Major Z, Lang RW (2010) Uniaxial compression testing of polymeric materials. Polym Testing 29(3):302–309

    CAS  Google Scholar 

  40. Boudarel H, Mathias J-D, Blaysat B, Grédiac M (2018) Towards standardized mechanical characterization of microbial biofilms: analysis and critical review. NPJ Biofilms Microbiomes 4(1):17

    Google Scholar 

  41. Gloag ES, Wozniak DJ, Stoodley P, Hall-Stoodley L (2021) Mycobacterium abscessus biofilms have viscoelastic properties which may contribute to their recalcitrance in chronic pulmonary infections. Sci Rep 11(1):5020

    CAS  Google Scholar 

  42. Bos MA, Van Vliet T (2001) Interfacial rheological properties of adsorbed protein layers and surfactants: a review. Adv Coll Interface Sci 91(3):437–471

    CAS  Google Scholar 

  43. Erni P, Fischer P, Windhab EJ, Kusnezov V, Stettin H, Läuger J (2003) Stress-and strain-controlled measurements of interfacial shear viscosity and viscoelasticity at liquid/liquid and gas/liquid interfaces. Rev Sci Instrum 74(11):4916–4924

    CAS  Google Scholar 

  44. Pelipenko J, Kristl J, Rošic R, Baumgartner S, Kocbek P (2012) Interfacial rheology: an overview of measuring techniques and its role in dispersions and electrospinning. Acta Pharm 62(2):123–140

    CAS  Google Scholar 

  45. Krägel J, Derkatch SR (2010) Interfacial shear rheology. Curr Opin Colloid Interface Sci 15(4):246–255

    Google Scholar 

  46. Rühs AP, Böni L, Fuller GG, Inglis RF, Fischer P (2013) Interfacial rheology of bacterial biofilms. Annual Transactions of the Nordic Rheology Society

    Google Scholar 

  47. Krägel J, Derkatch S, Miller R (2008) Interfacial shear rheology of protein-surfactant layers. Adv Coll Interface Sci 144(1–2):38–53

    Google Scholar 

  48. Mitropoulos V, Mütze A, Fischer P (2014) Mechanical properties of protein adsorption layers at the air/water and oil/water interface: a comparison in light of the thermodynamical stability of proteins. Adv Coll Interface Sci 206:195–206

    CAS  Google Scholar 

  49. El Omari Y, Yousfi M, Duchet-Rumeau J, Maazouz A (2021) Interfacial rheology testing of molten polymer systems: Effect of molecular weight and temperature on the interfacial properties. Polym Testing 101:107280

    Google Scholar 

  50. Pandit S, Fazilati M, Gaska K, Derouiche A, Nypelö T, Mijakovic I, Kádár R (2020) The exo-polysaccharide component of extracellular matrix is essential for the viscoelastic properties of bacillus subtilis biofilms. Int J Mol Sci 21(18):6755

    CAS  Google Scholar 

  51. Bertsch P, Etter D, Fischer P (2021) Transient in situ measurement of kombucha biofilm growth and mechanical properties. Food Funct 12(9):4015–4020

    CAS  Google Scholar 

  52. Erni P, Parker A (2012) Nonlinear viscoelasticity and shear localization at complex fluid interfaces. Langmuir 28(20):7757–7767

    CAS  Google Scholar 

  53. Erni P, Fischer P, Heyer P, Windhab EJ, Kusnezov V, Läuger J (2004) Rheology of gas/liquid and liquid/liquid interfaces with aqueous and biopolymer subphases. Mesophases, Polymers, and Particles. Springer, pp 16–23

    Google Scholar 

  54. Fuller GG, Vermant J (2012) Complex fluid-fluid interfaces: rheology and structure. Annu Rev Chem Biomol Eng 3:519–543

    CAS  Google Scholar 

  55. Oliver-Ortega H, Geng S, Espinach FX, Oksman K, Vilaseca F (2021) Bacterial cellulose network from kombucha fermentation impregnated with emulsion-polymerized poly (methyl methacrylate) to form nanocomposite. Polymers 13(4):664

    CAS  Google Scholar 

  56. Gao X, Shi Z, Liu C, Yang G, Sevostianov I, Silberschmidt VV (2015) Inelastic behaviour of bacterial cellulose hydrogel: In aqua cyclic tests. Polym Testing 44:82–92

    CAS  Google Scholar 

  57. Ruhs PA, Malollari KG, Binelli MR, Crockett R, Balkenende DW, Studart AR, Messersmith PB (2020) Conformal bacterial cellulose coatings as lubricious surfaces. ACS Nano 14(4):3885–3895

    CAS  Google Scholar 

  58. Freer EM, Yim KS, Fuller GG, Radke CJ (2004) Interfacial rheology of globular and flexible proteins at the hexadecane/water interface: comparison of shear and dilatation deformation. J Phys Chem B 108(12):3835–3844

    CAS  Google Scholar 

  59. Pepicelli M, Binelli MR, Studart AR, Ruhs PA, Fischer P (2021) Self-grown bacterial cellulose capsules made through emulsion templating. ACS Biomater Sci Eng 7(7):3221–3228

    CAS  Google Scholar 

  60. Daalkhaijav U (2018) Rheological techniques in characterization and aiding in the modification of soft matter

  61. Abriat C, Virgilio N, Heuzey M-C, Daigle F (2019) Microbiological and real-time mechanical analysis of Bacillus licheniformis and Pseudomonas fluorescens dual-species biofilm. Microbiology 165(7):747–756

    CAS  Google Scholar 

  62. Rühs PA, Böni L, Fuller GG, Inglis RF, Fischer P (2013) In-situ quantification of the interfacial rheological response of bacterial biofilms to environmental stimuli. PLoS ONE 8(11):e78524

    Google Scholar 

  63. Vandebril S, Franck A, Fuller GG, Moldenaers P, Vermant J (2010) A double wall-ring geometry for interfacial shear rheometry. Rheol Acta 49:131–144

    CAS  Google Scholar 

  64. Jaishankar A, Sharma V, McKinley GH (2011) Interfacial viscoelasticity, yielding and creep ringing of globular protein-surfactant mixtures. Soft Matter 7(17):7623–7634

    CAS  Google Scholar 

  65. Barman S, Christopher GF (2014) Simultaneous interfacial rheology and microstructure measurement of densely aggregated particle laden interfaces using a modified double wall ring interfacial rheometer. Langmuir 30(32):9752–9760

    CAS  Google Scholar 

  66. Sánchez-Puga P, Tajuelo J, Pastor JM, Rubio MA (2021) Flow field-based data analysis in interfacial shear rheometry. Adv Coll Interface Sci 288:102332

    Google Scholar 

  67. Ayirala SC, Al-Yousef AA, Li Z, Xu Z (2018) Water ion interactions at crude-oil/water interface and their implications for smart waterflooding in carbonates. SPE J 23(05):1817–1832

    CAS  Google Scholar 

  68. Jaensson N, Vermant J (2018) Tensiometry and rheology of complex interfaces. Curr Opin Colloid Interface Sci 37:136–150

    CAS  Google Scholar 

  69. Samaniuk JR, Hermans E, Verwijlen T, Pauchard V, Vermant J (2015) Soft-glassy rheology of asphaltenes at liquid interfaces. J Dispersion Sci Technol 36(10):1444–1451

    CAS  Google Scholar 

  70. Abriat C, Enriquez K, Virgilio N, Cegelski L, Fuller GG, Daigle F, Heuzey M-C (2020) Mechanical and microstructural insights of vibrio cholerae and Escherichia coli dual-species biofilm at the air-liquid interface. Colloids Surf B 188:110786

    CAS  Google Scholar 

  71. Shein E, Khaydapova D, Milanovskiy E (2015) Rheological properties of different minerals and clay soils. Eurasian J Soil Sci. https://doi.org/10.18393/ejss.2015.3.198-202

    Article  Google Scholar 

  72. Kamal MR, Khoshkava V (2015) Effect of cellulose nanocrystals (CNC) on rheological and mechanical properties and crystallization behavior of pla/cnc nanocomposites. Carbohyd Polym 123:105–114

    CAS  Google Scholar 

  73. Sentmanat M, Wang BN, McKinley GH (2005) Measuring the transient extensional rheology of polyethylene melts using the ser universal testing platform. J Rheol 49(3):585–606

    CAS  Google Scholar 

  74. Aho J, Boetker JP, Baldursdottir S, Rantanen J (2015) Rheology as a tool for evaluation of melt processability of innovative dosage forms. Int J Pharm 494(2):623–642

    CAS  Google Scholar 

  75. Towler BW, Rupp CJ, Cunningham AB, Stoodley P (2003) Viscoelastic properties of a mixed culture biofilm from rheometer creep analysis. Biofouling 19(5):279–285

    Google Scholar 

  76. Di Stefano A, D’Aurizio E, Trubiani O, Grande R, Di Campli E, Di Giulio M, Di Bartolomeo S, Sozio P, Iannitelli A, Nostro A et al (2009) Viscoelastic properties of Staphylococcus aureus and Staphylococcus epidermidis mono-microbial biofilms. Microb Biotechnol 2(6):634–641

    Google Scholar 

  77. Pavlovsky L, Sturtevant RA, Younger JG, Solomon MJ (2015) Effects of temperature on the morphological, polymeric, and mechanical properties of Staphylococcus epidermidis bacterial biofilms. Langmuir 31(6):2036–2042

    CAS  Google Scholar 

  78. Ghanbari A, Mousavi Z, Heuzey M-C, Patience GS, Carreau PJ (2020) Experimental methods in chemical engineering: rheometry. Can J Chem Eng 98(7):1456–1470

    CAS  Google Scholar 

  79. Song Y, Kim B, Park JD, Lee D (2023) Probing metal-carboxylate interactions in cellulose nanofibrils-based hydrogels using nonlinear oscillatory rheology. Carbohyd Polym 300:120262

    CAS  Google Scholar 

  80. Hyun K, Wilhelm M, Klein CO, Cho KS, Nam JG, Ahn KH, Lee SJ, Ewoldt RH, McKinley GH (2011) A review of nonlinear oscillatory shear tests: analysis and application of large amplitude oscillatory shear (laos). Prog Polym Sci 36(12):1697–1753

    CAS  Google Scholar 

  81. Hyun K, Lim HT, Ahn KH (2012) Nonlinear response of polypropylene (pp)/clay nanocomposites under dynamic oscillatory shear flow. Korea Aust. Rheol. J. 24:113–120

    Google Scholar 

  82. Ong EY, Ramaswamy M, Niu R, Lin NY, Shetty A, Zia RN, McKinley GH, Cohen I (2020) Stress decomposition in laos of dense colloidal suspensions. J Rheol 64(2):343–351

    CAS  Google Scholar 

  83. Kamkar M, Sadeghi S, Arjmand M, Sundararaj U (2019) Structural characterization of cvd custom-synthesized carbon nanotube/polymer nanocomposites in large-amplitude oscillatory shear (laos) mode: effect of dispersion characteristics in confined geometries. Macromolecules 52(4):1489–1504

    CAS  Google Scholar 

  84. Song Y, Kim M-G, Yi H-G, Lee D (2022) Nonlinear rheological properties of endothelial cell laden-cellulose nanofibrils hydrogels. Compos Res 35(3):153–160

    Google Scholar 

Download references

Acknowledgements

This work was partly supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIT) (NRF-2021R1C1C1014042) and Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (P0012770).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doojin Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, E., Kim, H., Kim, G. et al. A review of bacterial biofilm formation and growth: rheological characterization, techniques, and applications. Korea-Aust. Rheol. J. 35, 267–278 (2023). https://doi.org/10.1007/s13367-023-00078-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-023-00078-7

Keywords

Navigation