Skip to main content
Log in

Satellites of the Dipole-Forbidden Transitions to the Low-Lying 2S1/2 and 2D3/2,5/2 Excited States of K, Rb, and Cs Atoms in the Spectra of Gas-Phase Mixtures with CF4

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The luminescence excitation spectra of the D1 resonance line of atoms K, Rb, and Cs in gas mixtures with CF4 are found to contain satellite transitions, which correspond to the transition of an atom to the states (n – 1)d 2D3/2,5/2 and (n + 1)s 2S1/2, where n = 4, 5, and 6 for K, Rb, and Cs, respectively, with the simultaneous excitation of CF4 molecule vibrations at the IR active mode frequency ν3 with a quantum energy of 1283 cm–1. These satellite transitions are A(ns 2S1/2) + CF43 = 0) + hν → A((n – 1)d 2D3/2,5/2) + CF43 = 1) and A(ns 2S1/2) + CF43 = 0) + hν → A((n + 1)s 2S1/2) + CF43 = 1), where A = K, Rb, and Cs. The appearance of an optical coupling between the upper and lower states of these asymptotically (at \({{R}_{{{\text{A}} - {\text{C}}{{{\text{F}}}_{4}}}}}\) → ∞) forbidden transitions is shown to be caused by the interaction of the dipole moment of the ν3 = 1 ↔ ν3 = 0 vibrational transition in the CF4 molecule with the dipole moments of the electronic transitions np 2P1/2,3/2 ↔ (n – 1)d 2D3/2,5/2 and np 2P1/2,3/2 ↔ (n + 1)s 2S1/2 in an alkali metal atom; as a result of this interaction, the upper state of the satellite transition acquires admixtures of the A(np 2P1/2,3/2)CF43 = 0) resonance states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. L. I. Gudzenko and S. I. Yakovlenko, Sov. Phys. JETP 35, 877 (1972).

    ADS  Google Scholar 

  2. J. Szudy and W. E. Baylis, Phys. Rep. 266, 127 (1996).

    Article  ADS  Google Scholar 

  3. R. Hotop and R. Niemax, J. Phys. B 13, L93 (1980).

    Article  ADS  Google Scholar 

  4. J. C. White, G. A. Zdasiuk, J. F. Young, and S. E. Harris, Opt. Lett. 4, 137 (1979).

    Article  ADS  Google Scholar 

  5. V. A. Alekseev, A. A. Pastor, A. S. Pazgalev, P. A. Petrov, P. Yu. Serdobintsev, and T. A. Vartanyan, J. Quant. Spectrosc. Rad. Transfer 258, 107339 (2021).

  6. V. A. Alekseev, N. K. Bibinov, and I. P. Vinogradov, Opt. Spectrosc. 73, 154 (1992).

    ADS  Google Scholar 

  7. V. A. Alekseev, A. A. Pastor, P. Yu. Serdobintsev, and T. A. Vartanyan, JETP Lett. 114, 65 (2021).

    Article  ADS  Google Scholar 

  8. V. A. Alekseev and N. Schwentner, Chem. Phys. Lett. 463, 47 (2008).

    Article  ADS  Google Scholar 

  9. V. A. Alekseev, J. Grosser, O. Hoffmann, and F. Rebentrost, J. Chem. Phys. 129, 201102 (2008).

  10. G. A. Pitz and M. D. Anderson, Appl. Phys. Rev. 4, 041101 (2017).

  11. M. Carlos, O. Gruson, C. Richard, V. Boudon, M. Rotger, X. Thomas, C. Maul, C. Sydow,A. Domanskaya, R. Georges, P. Soulard, O. Pirali, M. Goubet, P. Asselin, and T. R. Huet, J. Quant. Spectrosc. Rad. Transfer 201, 75 (2017).

    Article  ADS  Google Scholar 

  12. G. Moe, A. C. Tam, and W. Happer, Phys. Rev. A 14, 349 (1976).

    Article  ADS  Google Scholar 

  13. V. Dubourg, M. Ferray, J. P. Visticot, and B. Sayer, J. Phys. B 19, 1165 (1986).

    Article  ADS  Google Scholar 

  14. E. J. Breford and F. Engelke, Chem. Phys. Lett. 75, 132 (1980).

    Article  ADS  Google Scholar 

  15. D. Edvardsson, S. Lunell, and Ch. M. Marian, Mol. Phys. 101, 2381 (2003).

    Article  ADS  Google Scholar 

  16. Y. Lee, S. Lee, and B. Kim, J. Phys. Chem. A 112, 6893 (2008).

    Article  Google Scholar 

  17. M. D. Rotondaro and G. P. Perram, Phys. Rev. A 57, 4045 (1998).

    Article  ADS  Google Scholar 

  18. S. Brode, Ch. Kolmel, H. Schiffer, and R. Ahlrichs, Z. Phys. Chem. 155, 23 (1987).

    Google Scholar 

  19. V. A. Alekseev, Opt. Spektrosk. 130, 1343 (2022).

    Google Scholar 

  20. S. E. Harris and J. C. White, IEEE J. Quant. Electron. 12, 972 (1977).

    Article  ADS  Google Scholar 

  21. A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team, NIST Atomic Spectra Database, Vers. 5.8 (Natl. Inst. Stand. Technol., Gaithersburg, MD, 2020). https://physics.nist.gov/asd. Accessed May 31, 2021. https://doi.org/10.18434/T4W30F

Download references

ACKNOWLEDGMENTS

The experiments were performed on the equipment of the Resource Center “Physical Methods of Surface Research” of St. Petersburg State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Alekseev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseev, V.A., Vartanyan, T.A., Pazgalev, A.S. et al. Satellites of the Dipole-Forbidden Transitions to the Low-Lying 2S1/2 and 2D3/2,5/2 Excited States of K, Rb, and Cs Atoms in the Spectra of Gas-Phase Mixtures with CF4. J. Exp. Theor. Phys. 137, 283–293 (2023). https://doi.org/10.1134/S1063776123090029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776123090029

Navigation