Skip to main content
Log in

Enhancement of genetic transformation efficiency in indica rice cultivar IR64 by vacuum infiltration and exogenous application of polyamines

  • Original Paper
  • Published:
Cereal Research Communications Aims and scope Submit manuscript

Abstract

Oryza sativa ssp. indica is not amenable to genetic modifications owing to its recalcitrant nature, rendering it difficult to transform and recover improved varieties to combat the persisting biotic and abiotic stress conditions. Therefore, in the present study, we have attempted to enhance transformation efficiency by applying polyamines and vacuum infiltration in Agrobacterium tumefaciens-mediated genetic transformation of Indica rice cv. IR64 seed-derived embryogenic calli. The highest number of regenerating calli, with maximum number of shoots per callus, was achieved in regeneration medium supplemented with 0.2 mM Spermidine, and the regenerated shoots displayed improved rooting when cultured on MS medium supplemented with 0.1 mM Putrescine. Further, vacuum infiltration of calli for 4 min resulted in the highest transformation efficiency of 8.1% as evident by GUS positive calli. The transformed calli were screened on the selection medium supplemented with hygromycin, and the integration and expression of the T-DNA in the rice genome were confirmed by GUS histochemical assay, PCR and Southern hybridization. The outcome of this study would be useful in micropropagation and genetic transformation studies of recalcitrant rice varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 4
Fig. 2
Fig. 3

References

  • Abe T, Futsuhara Y (1986) Plant regeneration from suspension culture of rice (Oryza saliva L.). Jpn J Breed 36:1–6

    Article  Google Scholar 

  • Abiri R, Maziah M, Shaharuddin NA, Yusof ZNB, Atabaki N, Hanafi MM, Sahebi M, Azizi P, Kalhori N, Valdiani A (2017) Enhancing somatic embryogenesis of Malaysian rice cultivar MR219 using adjuvant materials in a high-efficiency protocol. Int J Environ Sci Technol 14:1091–1108

    Article  CAS  Google Scholar 

  • Ahmed T, Biswas S, Elias SM, Rahman MS, Tuteja N, Seraj ZI (2018) In Planta transformation for conferring salt tolerance to a tissue-culture unresponsive indica rice (Oryza sativa L.) cultivar. In Vitro Cell Dev Biol-Plant 54(2):154–165

    Article  CAS  Google Scholar 

  • Aldemita RR, Hodges TK (1996) Agrobacterium tumefaciens mediated transformation of japonica and indica rice varieties. Planta 199:612–617

    Article  CAS  Google Scholar 

  • Altman A (1982) Retardation of radish leaf senescence by polyamines. Physiol Plant 54:189–193

    Article  CAS  Google Scholar 

  • Arun M, Subramanyam K, Theboral J, Ganapathi A, Manickavasagam M (2014) Optimized shoot regeneration for Indian soybean: the influence of exogenous polyamines. Plant Cell Tissue Organ Cult 117:305–309

    Article  CAS  Google Scholar 

  • Arun M, Chinnathambi A, Subramanyam K, Karthik S, Sivanandhan G, Theboral J, Alharbi SA, Kim CK, Ganapathi A (2016) Involvement of exogenous polyamines enhances regeneration and Agrobacterium-mediated genetic transformation in half-seeds of soybean. 3 Biotech 6(2):148

    Article  PubMed  PubMed Central  Google Scholar 

  • Aydin M, Hossein Pour A, Haliloglu K, Tosun M (2016) Effect of polyamines on somatic embryogenesis via mature embryo in wheat. Turk J Biol 40:1178–1184

    Article  CAS  Google Scholar 

  • Bais HP, Bhagyalakshmi N, Rajasekaran T, Ravishankar GA (2000) Influence of polyamines on growth and production of secondary metabolites in hairy root cultures of Beta vulgaris and Tagetes patula. Acta Physiol Plant 22:151–158

    Article  CAS  Google Scholar 

  • Bajaj S, Rajam MV (1996) Polyamine accumulation and near loss of morphogenesis in long term callus cultures of rice. Restoration of plant regeneration by manipulation of cellular polyamine levels. Plant Physiol 112:1343–1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bechtold N, Pelletier G (1998) In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Methods Mol Biol 82:259–266

    CAS  PubMed  Google Scholar 

  • Canche-Moo RLR, Ku-Gonzalez A, Burgeff C, Loyola-Vargas VM, Rodriguez-Zapata LC, Castano E (2006) Genetic transformation of Coffea canephora by vacuum infiltration. Plant Cell Tiss Org Cult 84(3):373–377

    Article  Google Scholar 

  • Cheng M, Fry JE, Pang SZ, Zhou HP, Hironaka CM, Duncan DR, Conner W, Wan YC (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115(3):971–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chhapekar S, Raghavendrarao S, Pavan G, Ramakrishna C, Singh VK, Phanindra ML (2015) Transgenic rice expressing a codon-modified synthetic CP4-EPSPS confers tolerance to broad-spectrum herbicide, glyphosate. Plant Cell Rep 34:721–731

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Curtis IS, Nam HG (2001) Transgenic radish (Raphanus sativus L. longipinnatus Baily) by floral-dip method—plant development and surfactant are important in optimizing transformation efficiency. Transgenic Res 10:363–371

    Article  CAS  PubMed  Google Scholar 

  • Datta K, Datta SK (2006) Indica rice (Oryza sativa, BR29 and IR64). Agrobacterium protocols. Humana Press, Totowa, pp 201–212

    Chapter  Google Scholar 

  • Datta K, Tu J, Oliva N, Ona I, Velazhahan R, Mew TW, Muthukrishnan S, Datta SK (2001) Enhanced resistance to sheath blight by constitutive expression of infection-related rice chitinase in transgenic elite indica rice cultivars. Plant Sci 160:405–414

    Article  CAS  PubMed  Google Scholar 

  • Duan Y, Zhai C, Li H, Li J, Mei W, Gui H, Ni D, Song F, Li L, Zhang W, Yang J (2012) An efficient and high-throughput protocol for Agrobacterium-mediated transformation based on phosphomannose isomerase positive selection in japonica rice (Oryza sativa L.). Plant Cell Rep 31:1611–1624

    Article  CAS  PubMed  Google Scholar 

  • Hausman JF, Kevers C, Gaspar T (1994) Involvement of putrescine in the inductive rooting phase of poplar shoots raised in vitro. Physiol Plant 92:201–206

    Article  CAS  Google Scholar 

  • Hiei Y, Komari T (2006) Improved protocols for transformation of indica rice mediated by Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult 85:271–283

    Article  CAS  Google Scholar 

  • Hofgen R, Willmitzer L (1988) Storage of competent cells for Agrobacterium transformation. Nucl Acids Res 16:9877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgen Res 2:208–218

    Article  CAS  Google Scholar 

  • Islam MM, Haque ME, Islam MA, Sikdar B, Khalekuzzaman M (2014) Establishment of an efficient protocol for in vitro callus induction and regeneration system using mature embryo in elite rice (Oryza sativa L.) cultivars. Res Plant Biol 4:9–20

    Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBOJ 6:3901–3907

    Article  CAS  Google Scholar 

  • Jha AK, Dahleen LS, Suttle JC (2007) Ethylene influences green plant regeneration from barley callus. Plant Cell Rep 26(3):285–290

    Article  CAS  PubMed  Google Scholar 

  • Kakkar RK, Rai VK (1987) Effect of spermidine and IAA on carbohydrate metabolism during rhizogenesis in Phaseolus vulgaris. I. Hypocotyl cuttings. Indian J Exp Biol 25:476–478

    CAS  PubMed  Google Scholar 

  • Kakkar RK, Sawhney VK (2003) Polyamine research in plants-a changing perspective. Physiol Plant 116:281–292

    Article  Google Scholar 

  • Karthikeyan A, Pandian SK, Ramesh M (2011) Agrobacterium-mediated transformation of leaf base derived callus tissues of popular indica rice (Oryza sativa L. sub sp. indica cv. ADT 43). Plant Sci 181:258–268

    Article  CAS  PubMed  Google Scholar 

  • Khaleda L, Al-Forkan M (2006) Stimulatory effects of casein hydrolysates and proline in in vitro callus induction and plant regeneration from five deepwater rice (Oryza sativa L.). Biotechnology 5:379–384

    Article  CAS  Google Scholar 

  • Khanna H, Daggard G (2003) Agrobacterium tumefaciens-mediated transformation of wheat using a superbinary vector and a polyamine-supplemented regeneration medium. Plant Cell Rep 21(5):429–436

    Article  CAS  PubMed  Google Scholar 

  • Khanna HK, Raina SK (1999) Agrobacterium-mediated transformation of indica rice cultivars using binary and superbinary vectors. Aust J Plant Physiol 26:311–324

    CAS  Google Scholar 

  • Khush GS (1995) Breaking the yield frontier of rice. GeoJournal 35(3):329–332

    Article  Google Scholar 

  • Koncz C, Martini N, Mayerhofer R, Koncz-Kalman Z, Korber H, Redei GP, Schell J (1989) High-frequency T-DNA mediated gene tagging in plants. Proc Natl Acad Sci USA 86:8467–8471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar KK, Maruthasalam S, Loganathan M, Sudhakar D, Balasubramanian P (2005) An improved Agrobacterium mediated transformation protocol for recalcitrant elite indica rice cultivars. Plant Mol Biol Rep 23:67–73

    Article  CAS  Google Scholar 

  • Leelavathi S, Sunnichan VG, Kumria R, Vijaykanth GP, Bhatnagar RK, Reddy VS (2004) A simple and rapid Agrobacterium-mediated transformation protocol for cotton (Gossypium hirsutum L.): embryogenic calli as a source to generate large numbers of transgenic plants. Plant Cell Rep 22:465–470

    Article  CAS  PubMed  Google Scholar 

  • Lin YJ, Zhang QF (2005) Optimizing the tissue culture conditions for high efficiency transformation of Indica rice. Plant Cell Rep 23:540–547

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Zhou B, Yang Y, Mei J, Zhao X, Guo X, Huang X, Tang D, Liu X (2009) Piercing and vacuum infiltration of the mature embryo: a simplified method for Agrobacterium-mediated transformation of indica rice. Plant Cell Rep 28:1065–1074

    Article  CAS  PubMed  Google Scholar 

  • Lopez E, Proano K, Jadan M, Mihai R (2015) Callus tissue induction and analysis of GUS reporter gene expression in tomato (Solanum lycopersicum L.) transformed with Agrobacterium tumefaciens. Rom Biotechnol Lett 20(2):10205

    CAS  Google Scholar 

  • Mackill DJ, Khush GS (2018) IR64: a high-quality and high-yielding mega variety. Rice 11:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin-Tanguy J, Carre M (1993) Polyamines in grapevine microcuttings cultivated in vitro. Effects of amines and inhibitors of polyamine biosynthesis on polyamine levels and microcutting growth and development. Plant Growth Regul 13:269–280

    Article  CAS  Google Scholar 

  • Naqvi SM, Razia S, Rashid H (2005) Tissue culture studies in Oryza sativa L. cvs. basmati 385 and super basmati. Pak J Bot 37(4):823–828

    Google Scholar 

  • Pandey SK, Ramesh B, Gupta PKS (1994) Study on effect on genotype and culture medium on callus formation and plant regeneration in rice (Oryza sativa L.). Indian J Genet 54:293–299

    Google Scholar 

  • Parimalan R, Giridhar P, Ravishankar GA (2011) Enhanced shoot organogenesis in Bixa orellana L. in the presence of putrescine and silver nitrate. Plant Cell Tissue Org Cult 105:285–290

    Article  CAS  Google Scholar 

  • Park SH, Pinson SR, Smith RH (1996) T-DNA integration into genomic DNA of rice following Agrobacterium inoculation of isolated shoot apices. Plant Mol Biol 32:1135–1148

    Article  CAS  PubMed  Google Scholar 

  • Park EH, Bae H, Park WT, Kim YB, Chae SC, Park SU (2016) Improved shoot organogenesis of gloxinia (Sinningia speciosa) using silver nitrate and putrescine treatment. Plant Omics 5:6–9

    Google Scholar 

  • Parkhi V, Rai M, Tan J, Oliva N, Rehana S, Bandyopadhyay A, Torrizo L, Ghole V, Datta K, Datta SK (2005) Molecular characterization of marker-free transgenic lines of indica rice that accumulate carotenoids in seed endosperm. Mol Genet Genom 274(4):325–336

    Article  CAS  Google Scholar 

  • Porebski S, Bailey G, Baum BR (1997) Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Rep 15:8–15

    Article  CAS  Google Scholar 

  • Repalli SK, Geda CK, Pradhan NSN, Rao GJN (2017) Regeneration enhancement in tissue culture of indica rice’s through partial desiccation and chemical supplements. J Plant Biochem Physiol 5:196

    Article  Google Scholar 

  • Safitri FA, Ubaidillah M, Kim KM (2016) Efficiency of transformation mediated by Agrobacterium tumefaciens using vacuum infiltration in rice (Oryza sativa L.). Plant Biotechnol J 43:66–75

    Article  Google Scholar 

  • Saharan V, Yadav RC, Yadav NR, Ram K (2004) Studies on improved Agrobacterium-mediated transformation in two indica rice (O. sativa L.). Afr J Biotechnol 3:572–575

    CAS  Google Scholar 

  • Sahoo RK, Tuteja N (2012) Development of Agrobacterium-mediated transformation technology for mature seed-derived callus tissues of indica rice cultivar IR64. GM Crops Food 3:123–128

    Article  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Press, New York

    Google Scholar 

  • Shoeb F, Yadav JS, Bajaj S, Rajam MV (2001) Polyamines as biomarkers for plant regeneration capacity: improvement of regeneration by modulation of polyamine metabolism in different genotypes of indica rice. Plant Sci 160:1229–1235

    Article  CAS  PubMed  Google Scholar 

  • Sivanandhan G, Mariashibu TS, Arun M, Rajesh M, Kasthurirengan S, Selvaraj N, Ganapathi A (2011) The effect of polyamines on the efficiency of multiplication and rooting of Withania somnifera (L.) Dunal and content of some withanolides in obtained plants. Acta Physiol Plant 33:2279–2288

    Article  CAS  Google Scholar 

  • Smith TA (1985) Polyamines. Annu Rev Plant Physiol 36:117–143

    Article  CAS  Google Scholar 

  • Tague B, Mantis J (2006) In planta Agrobacterium-mediated transformation by vacuum infiltration. Methods Mol Biol 323:215–223

    PubMed  Google Scholar 

  • Tonon G, Kevers C, Gaspar T (2001) Changes in polyamines, auxins and peroxidase activity during in vitro rooting of Fraxinus angustifolia shoots: an auxin-independent rooting model. Tree Physiol 21:655–663

    Article  CAS  PubMed  Google Scholar 

  • Tyagi H, Rajasubramaniam S, Dasgupta I (2007) Regeneration and Agrobacterium-mediated transformation of a popular indica rice variety ADT39. Curr Sci 93:678–683

    CAS  Google Scholar 

  • Van den Broeck D, Van Den Straeten D, Van Montague M, Caplan A (1994) A group of chromosomal proteins is specifically released by spermine and loses DNA-binding activity upon phosphorylation. Plant Physiol 106:559–566

    Article  PubMed  PubMed Central  Google Scholar 

  • Vasudevan A, Selvaraj N, Ganapathi A, Kasthurirengan S, Ramesh Anbazhagan V, Manickavasagam M, Choi CW (2008) Leucine and spermidine enhance shoot differentiation in cucumber (Cucumis sativus L.). In Vitro Cell Dev Biol Plant 44(4):300–306

    Article  CAS  Google Scholar 

  • Vasudevan V, Subramanyam K, Elayaraja D, Karthik S, Vasudevan A, Manickavasagam M (2017) Assessment of the efficacy of amino acids and polyamines on regeneration of watermelon (Citrullus lanatus Thunb.) and analysis of genetic fidelity of regenerated plants by SCoT and RAPD markers. Plant Cell Tissue Org Cult 130(3):681–687

    Article  CAS  Google Scholar 

  • Wang WC, Menon G, Hansen G (2003) Development of a novel Agrobacterium-mediated transformation method to recover transgenic Brassica napus plants. Plant Cell Rep 22:274–281

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding support from ICAR-National Institute for Plant Biotechnology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kamana Singh or Suhas G. Karkute.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by Janusz Zimny.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavan, G., Yadav, S., Singh, K. et al. Enhancement of genetic transformation efficiency in indica rice cultivar IR64 by vacuum infiltration and exogenous application of polyamines. CEREAL RESEARCH COMMUNICATIONS (2023). https://doi.org/10.1007/s42976-023-00455-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42976-023-00455-6

Keywords

Navigation