Skip to main content
Log in

Proton Conduction and Electrochemical Performance of La/Pr co-Doped Ceria Electrolyte in Ceramic Fuel Cell

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

La/Pr co-doped ceria (LCP) is processed to fabricate low-temperature ceramic fuel cell based on industrial-grade rare-earth carbonate electrolyte that is reached above a maximum power density of 750 mW/cm2 at 520 °C. The charge carriers are investigated through LCP fuel cell having symmetric NCAL (Ni0.8Co0.15Al0.05LiO2-δ) electrodes using proton conductor BCZY (BaCe0.7Zr0.1Y0.2O3-δ) as a blocking layer and are found protons that dominate during the cell operation. The results of associated characterizations for HCC (hydrogen concentration cell) and the OCC (oxygen concentration cell) reveal that LCP material is mixed conductor of both protons and oxygen ions simultaneously. Transmission electron microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FTIR) analysis before and after the electrochemical testing of the cell are performed which show an amorphous layer of LiOH/Li2CO3 mixture that is formed after the tests on the surface of LCP structure. Conceptually, it looks that LiOH/Li2CO3 mixture in molten state in the interface region of two-phase material promotes the proton conduction through LCP electrolyte, with negligible oxygen ion conduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. Boldrin, P., & Brandon, N. P. (2019). Progress and outlook for solid oxide fuel cells for transportation applications. Nature Catalysis, 2(7), 571–577. https://doi.org/10.1038/s41929-019-0310-y

    Article  CAS  Google Scholar 

  2. Lu, Y., Zhu, B., Shi, J., & Yun, S. (2021). Advanced low-temperature solid oxide fuel cells based on a built-in electric field. Energy Materials, 1, 100007. https://doi.org/10.20517/energymater.2021.06

  3. Wachsman, E. D., & Lee, K. T. (2011). Lowering the temperature of solid oxide fuel cells. Science. https://doi.org/10.1126/science.1204090

    Article  PubMed  Google Scholar 

  4. Shao, Z., Zhou, W., & Zhu, Z. (2012). Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells. Progress in Materials Science. https://doi.org/10.1016/j.pmatsci.2011.08.002

    Article  Google Scholar 

  5. Goodenough, J. B. (2000). Oxide-ion conductors by design. Nature, 404(6780), 821–823. https://doi.org/10.1038/35009177

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, S., Liu, T., Li, C., Yao, S., Li, C., Yang, G., & Liu, M. (2015). Atmospheric plasma-sprayed La0.8Sr0.2Ga0.8Mg0.2O3 electrolyte membranes for intermediate-temperature solid oxide fuel cells. Journal of Materials Chemistry A. https://doi.org/10.1039/C5TA01203A

    Article  Google Scholar 

  7. Arunkumar, P., Meena, M., & Babu, K. S. (2012). A review on cerium oxide-based electrolytes for ITSOFC. Nanomaterials and Energy, 1(5), 288–305. https://doi.org/10.1680/nme.12.00015

    Article  CAS  Google Scholar 

  8. Fabbri, E., Pergolesi, D., & Traversa, E. (2010). Materials challenges toward proton-conducting oxide fuel cells: A critical review. Chemical Society reviews, 39(11), 4355–4369. https://doi.org/10.1039/b902343g

    Article  CAS  PubMed  Google Scholar 

  9. Zhu, B., Mi, Y., Xia, C., Wang, B., Kim, J. S., Lund, P., & Li, T. (2021). Nano-scale view into solid oxide fuel cell and semiconductor membrane fuel cell material and technology. Energy Materials. https://doi.org/10.20517/energymater.2021.03

    Article  PubMed  Google Scholar 

  10. Wang, H., Wang, X., Meng, B., Tan, X., Loh, K. S., Sunarso, J., & Liu, S. (2018). Perovskite-based mixed protonic–electronic conducting membranes for hydrogen separation: recent status and advances. Journal of Industrial and Engineering Chemistry, 60, 297–306. https://doi.org/10.1016/j.jiec.2017.11.016

    Article  CAS  Google Scholar 

  11. Ni, M., & Shao, Z. (2020). Fuel cells that operate at 300° to 500°C. Science. https://doi.org/10.1126/science.abc9136

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fabbri, E., Bi, L., Pergolesi, D., & Traversa, E. (2012). Towards the next generation of solid oxide fuel cells operating below 600 °C with chemically stable proton-conducting electrolytes. Advanced Materials. https://doi.org/10.1002/adma.201103102

    Article  PubMed  Google Scholar 

  13. Zuo, C., Zha, S., Liu, M., Hatano, M., & Uchiyama, M. (2006). Ba(Zr0.1Ce0.7Y0.2)O3–δ as an electrolyte for low-temperature solid-oxide fuel cells. Advanced Materials. https://doi.org/10.1002/adma.200601366

    Article  Google Scholar 

  14. Cao, J., Ji, Y., & Shao, Z. (2022). Perovskites for protonic ceramic fuel cells: a review. Energy & Environmental Science, 15(6), 2200–2232. https://doi.org/10.1039/D2EE00132B

    Article  CAS  Google Scholar 

  15. Duan, C., Tong, J., Shang, M., Nikodemski, S., Sanders, M., Ricote, S., Almansoori, A., & O’Hayre, R. (2015). Readily processed protonic ceramic fuel cells with high performance at low temperatures. Science. https://doi.org/10.1126/science.aab3987

    Article  PubMed  PubMed Central  Google Scholar 

  16. Liu, Z., Zhou, M., Chen, M., Cao, D., Shao, J., Liu, M., & Liu, J. (2020). A high-performance intermediate-to-low temperature protonic ceramic fuel cell with in-situ exsolved nickel nanoparticles in the anode. Ceramics International. https://doi.org/10.1016/j.ceramint.2020.05.062

    Article  Google Scholar 

  17. Azad, A. K., Abdalla, A. M., Afif, A., Azad, A., Afroze, S., Idris, A. C., Park, J.-Y., Saqib, M., Radenahmad, N., Hossain, S., Elius, I. B., Al-Mamun, M., Zaini, J., Al-Hinai, A., Reza, M. S., & Irvine, J. T. S. (2021). Improved mechanical strength, proton conductivity and power density in an ‘all-protonic’ ceramic fuel cell at intermediate temperature. Scientific Reports, 11(1), 19382. https://doi.org/10.1038/s41598-021-98987-6

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Le, L. Q., Hernandez, C. H., Rodriguez, M. H., Zhu, L., Duan, C., Ding, H., O’Hayre, R. P., & Sullivan, N. P. (2021). Proton-conducting ceramic fuel cells: Scale up and stack integration. Journal of Power Sources. https://doi.org/10.1016/j.jpowsour.2020.228868

    Article  Google Scholar 

  19. Song, Y., Chen, J., Yang, M., Xu, M., Liu, D., Liang, M., Wang, Y., Ran, R., Wang, W., Ciucci, F., & Shao, Z. (2022). Realizing simultaneous detrimental reactions suppression and multiple benefits generation from nickel doping toward improved protonic ceramic fuel cell performance. Small (Weinheim an der Bergstrasse, Germany), 18(16), e2200450. https://doi.org/10.1002/smll.202200450

    Article  CAS  PubMed  Google Scholar 

  20. He, F., Gao, Q., Liu, Z., Yang, M., Ran, R., Yang, G., Wang, W., Zhou, W., & Shao, Z. (2021). A New Pd doped proton conducting perovskite oxide with multiple functionalities for efficient and stable power generation from ammonia at reduced temperatures. Advanced Energy Materials, 11(19), 2003916. https://doi.org/10.1002/aenm.202003916

    Article  CAS  Google Scholar 

  21. Bhabu, K. A., Theerthagiri, J., Madhavan, J., Balu, T., Rajasekaran, T. R., & Arof, A. K. (2016). Investigations on acceptor (Pr3+) and donor (Nb5+) doped cerium oxide for the suitability of solid oxide fuel cell electrolytes. Ionics, 22(12), 2461–2470. https://doi.org/10.1007/s11581-016-1780-4

    Article  CAS  Google Scholar 

  22. Ajith Kumar, S., Kuppusami, P., Amirthapandian, S., & Fu, Y.-P. (2020). Effect of Sm co-doping on structural, mechanical and electrical properties of Gd doped ceria solid electrolytes for intermediate temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 45(54), 29690–29704. https://doi.org/10.1016/j.ijhydene.2019.10.098

    Article  CAS  Google Scholar 

  23. Kalpana Devi, A., Ram Kumar, G., Prerna, C., Amarsingh Bhabu, K., Sabarinathan, V., & Rajasekaran, T. R. (2020). Superionic conductive La3+ and Pr3+ Co-doped cerium oxide for IT-SOFC applications. Journal of Materials Science: Materials in Electronics, 31(13), 10628–10638. https://doi.org/10.1007/s10854-020-03612-3

    Article  CAS  Google Scholar 

  24. Amarsingh Bhabu, K., Theerthagiri, J., Madhavan, J., Balu, T., & Rajasekaran, T. R. (2016). Superior oxide ion conductivity of novel acceptor doped cerium oxide electrolytes for intermediate-temperature solid oxide fuel cell applications. The Journal of Physical Chemistry C, 120(33), 18452–18461. https://doi.org/10.1021/acs.jpcc.6b05873

    Article  CAS  Google Scholar 

  25. Zhu, B., Liu, X., Zhu, Z., & Ljungberg, R. (2008). Solid oxide fuel cell (SOFC) using industrial grade mixed rare-earth oxide electrolytes. International Journal of Hydrogen Energy, 33(13), 3385–3392. https://doi.org/10.1016/j.ijhydene.2008.03.065

    Article  CAS  Google Scholar 

  26. Xia, C., Wang, B., Ma, Y.-Y., Cai, Y., Afzal, M., Liu, Y., He, Y., Zhang, W., Dong, W., Li, J., & Zhu, B. (2016). Industrial-grade rare-earth and perovskite oxide for high-performance electrolyte layer-free fuel cell. Journal of Power Sources, 307, 270–279. https://doi.org/10.1016/j.jpowsour.2015.12.086

    Article  ADS  CAS  Google Scholar 

  27. Xia, C., Wang, B., Cai, Y., Zhang, W., Afzal, M., & Zhu, B. (2017). Electrochemical properties of LaCePr-oxide/K2WO4 composite electrolyte for low-temperature SOFCs. Electrochemistry Communications. https://doi.org/10.1016/j.elecom.2016.12.013

    Article  Google Scholar 

  28. Qiao, Z., Xia, C., Cai, Y., Afzal, M., Wang, H., Qiao, J., & Zhu, B. (2018). Electrochemical and electrical properties of doped CeO2-ZnO composite for low-temperature solid oxide fuel cell applications. Journal of Power Sources, 392, 33–40. https://doi.org/10.1016/j.jpowsour.2018.04.096

    Article  ADS  CAS  Google Scholar 

  29. Jiang, Y., Huang, H., Wang, M., Zhang, W., & Wang, B. (2020). The influence of preparation pressure on the electrochemical performance of semiconductor-ionic membrane fuel cells (SIMFC). Journal of Materials Science: Materials in Electronics, 31(8), 6233–6240. https://doi.org/10.1007/s10854-020-03177-1

    Article  CAS  Google Scholar 

  30. Zhou, J., Chen, G., Chen, Z., Wei, K., Guan, G., Geng, S., & Abudula, A. (2022). Effects of different lithium compound electrodes on the electrochemical performance of the ceramic fuel cells. International Journal of Hydrogen Energy, 47(86), 36640–36649. https://doi.org/10.1016/j.ijhydene.2022.08.222

    Article  CAS  Google Scholar 

  31. Wei, K., Chen, G., Chen, Z., Dai, R., Yu, K., & Geng, S. (2022). Ionic conduction of ceramic/molten salt composite electrolyte in fuel cell with lithium compound as electrode. Journal of The Electrochemical Society. https://doi.org/10.1149/1945-7111/ac908a

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chen, Z., Chen, G., Zhang, R., Dai, R., Lv, X., & Geng, S. (2021). Toward understanding of temperature dependence of an advanced ceramic fuel cell with Ni0.8Co0.15Al0.05LiO2 as an electrode. ACS Applied Energy Materials, 4(8), 8386–8394. https://doi.org/10.1021/acsaem.1c01613

    Article  CAS  Google Scholar 

  33. Zhang, R., Chen, G., Chen, Z., Dai, R., Lv, X., Lou, T., Li, Y., & Geng, S. (2021). Investigation of the sudden drop of electrolyte conductivity at low temperature in ceramic fuel cell with Ni0·8Co0·15Al0·05LiO2 electrode. International Journal of Hydrogen Energy, 46(54), 27793–27800. https://doi.org/10.1016/j.ijhydene.2021.06.017

    Article  CAS  Google Scholar 

  34. Shah, M. A. K. Y., Lu, Y., Mushtaq, N., Singh, M., Rauf, S., Yousaf, M., & Zhu, B. (2022). ZnO/MgZnO heterostructure membrane with type II band alignment for ceramic fuel cells. Energy Materials. https://doi.org/10.2057/energymater.2022.27

    Article  PubMed  Google Scholar 

  35. Ali, A., Rafique, A., Kaleemullah, M., Abbas, G., Ajmal Khan, M., Ahmad, M. A., & Raza, R. (2018). Effect of alkali carbonates (single, binary, and ternary) on doped ceria: a composite electrolyte for low-temperature solid oxide fuel cells. ACS Applied Materials & Interfaces, 10(1), 806–818. https://doi.org/10.1021/acsami.7b17010

    Article  CAS  Google Scholar 

  36. Zhu, B., Li, S., & Mellander, B. E. (2008). Theoretical approach on ceria-based two-phase electrolytes for low temperature (300–600 °C) solid oxide fuel cells. Electrochemistry Communications, 10(2), 302–305. https://doi.org/10.1016/j.elecom.2007.11.037

    Article  CAS  Google Scholar 

  37. Yang, L., Wang, S., Blinn, K. S., Liu, M., Liu, Z., Cheng, Z., & Liu, M. (2009). Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr0.1Ce0.7Y0.2-xYbxO3−δ. Science. https://doi.org/10.1126/science.1174811

    Article  PubMed  PubMed Central  Google Scholar 

  38. Liu, J., Yang, F., Jiang, Z., Zhang, Y., Hu, E., Wang, H., & Yang, X. (2021). enhanced ionic conductivity and durability of novel solid oxide fuel cells by constructing a heterojunction based on transition and rare earth metal co-doped ceria. ACS Applied Energy Materials, 4(12), 13492–13503. https://doi.org/10.1021/acsaem.1c01873

    Article  CAS  Google Scholar 

  39. Kreuer, K.-D., Paddison, S. J., Spohr, E., & Schuster, M. (2004). Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology. Chemical Reviews, 104(10), 4637–4678. https://doi.org/10.1021/cr020715f

    Article  CAS  PubMed  Google Scholar 

  40. Kreuer, K.-D. (1996). Proton conductivity: materials and applications. Chemistry of Materials, 8(3), 610–641. https://doi.org/10.1021/cm950192a

    Article  CAS  Google Scholar 

  41. Li, G. J., & Kawi, S. (1998). Synthesis, characterization and sensing application of novel semiconductor oxides. Talanta, 45(4), 759–766. https://doi.org/10.1016/S0039-9140(97)00295-6

    Article  CAS  PubMed  Google Scholar 

  42. Chen, G., Zhu, B., Deng, H., Luo, Y., Sun, W., Liu, H., Zhang, W., Wang, X., Qian, Y., Hu, X., Geng, S., & Kim, J. S. (2018). Advanced fuel cell based on Perovskite La-SrTiO3 semiconductor as the electrolyte with superoxide-ion conduction. ACS Applied Materials & Interfaces, 10(39), 33179–33186. https://doi.org/10.1021/acsami.8b10087

    Article  CAS  Google Scholar 

  43. Chen, W. C., Lin, R. C., Tseng, S. M., & Kuo, S. W. (2018). Minimizing the strong screening effect of polyhedral oligomeric silsesquioxane nanoparticles in hydrogen-bonded random copolymers. Polymers (Basel). https://doi.org/10.3390/polym10030303

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zheng, X., Li, X., Wang, Z., Guo, H., Huang, Z., Yan, G., & Wang, D. (2016). Investigation and improvement on the electrochemical performance and storage characteristics of LiNiO2-based materials for lithium ion battery. Electrochimica Acta, 191, 832–840. https://doi.org/10.1016/j.electacta.2016.01.142

    Article  CAS  Google Scholar 

  45. Zhang, W., Zhang, L., Guan, K., Zhang, X., Meng, J., Wang, H., Liu, X., & Meng, J. (2020). Effective promotion of oxygen reduction activity by rare earth doping in simple perovskite cathodes for intermediate-temperature solid oxide fuel cells. Journal of Power Sources. https://doi.org/10.1016/j.jpowsour.2019.227360

    Article  Google Scholar 

  46. Chen, G., Zhang, X., Luo, Y., He, Y., Liu, H., Geng, S., Yu, K., & Dong, Y. (2020). Ionic conduction mechanism of a nanostructured BCY electrolyte for low-temperature SOFC. International Journal of Hydrogen Energy, 45(45), 24108–24115. https://doi.org/10.1016/j.ijhydene.2019.07.223

    Article  CAS  Google Scholar 

  47. Lyu, Y., Xie, J., Wang, D., & Wang, J. (2020). Review of cell performance in solid oxide fuel cells. Journal of Materials Science, 55(17), 7184–7207. https://doi.org/10.1007/s10853-020-04497-7

    Article  ADS  CAS  Google Scholar 

  48. Ricca, C., Ringuedé, A., Cassir, M., Adamo, C., & Labat, F. (2018). Conduction mechanisms in oxide-carbonate electrolytes for SOFC: highlighting the role of the interface from first-principles modeling. The Journal of Physical Chemistry C, 122(18), 10067–10077. https://doi.org/10.1021/acs.jpcc.8b02174

    Article  CAS  Google Scholar 

  49. Wang, X., Ma, Y., Li, S., Kashyout, A.-H., Zhu, B., & Muhammed, M. (2011). Ceria-based nanocomposite with simultaneous proton and oxygen ion conductivity for low-temperature solid oxide fuel cells. Journal of Power Sources, 196(5), 2754–2758. https://doi.org/10.1016/j.jpowsour.2010.11.033

    Article  ADS  CAS  Google Scholar 

  50. Pérez-Coll, D., Heras-Juaristi, G., Fagg, D. P., & Mather, G. C. (2014). Transport-number determination of a protonic ceramic electrolyte membrane via electrode-polarisation correction with the Gorelov method. Journal of Power Sources, 245, 445–455. https://doi.org/10.1016/j.jpowsour.2013.06.155

    Article  ADS  CAS  Google Scholar 

  51. Lan, R., & Tao, S. (2014). Novel proton conductors in the Layered oxide material LixlAl0.5Co0.5O2. Advanced Energy Materials. https://doi.org/10.1002/aenm.201301683

    Article  Google Scholar 

  52. Zhu, B., & Mellander, B. E. (1997). Proton conduction and diffusion in Li2SO4. Solid State Ionics, 97(1), 535–540. https://doi.org/10.1016/S0167-2738(97)00057-X

    Article  CAS  Google Scholar 

  53. Nakayama, M., & Martin, M. (2009). First-principles study on defect chemistry and migration of oxide ions in ceria doped with rare-earth cations. Physical Chemistry Chemical Physics, 11(17), 3241–3249. https://doi.org/10.1039/B900162J

    Article  CAS  PubMed  Google Scholar 

  54. Fan, L., Wang, C., Chen, M., & Zhu, B. (2013). Recent development of ceria-based (nano)composite materials for low temperature ceramic fuel cells and electrolyte-free fuel cells. Journal of Power Sources. https://doi.org/10.1016/j.jpowsour.2013.01.138

    Article  Google Scholar 

  55. Xing, Y., Wu, Y., Li, L., Shi, Q., Shi, J., Yun, S., Akbar, M., Wang, B., Kim, J.-S., & Zhu, B. (2019). Proton shuttles in CeO2/CeO2−δ core-shell structure. ACS Energy Letters, 4(11), 2601–2607. https://doi.org/10.1021/acsenergylett.9b01829

    Article  CAS  Google Scholar 

  56. Radenahmad, N., Afif, A., Petra, P. I., Rahman, S. M. H., Eriksson, S.-G., & Azad, A. K. (2016). Proton-conducting electrolytes for direct methanol and direct urea fuel cells – a state-of-the-art review. Renewable and Sustainable Energy Reviews, 57, 1347–1358. https://doi.org/10.1016/j.rser.2015.12.103

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (Grant No.3203002205A1 and 4003002204) and Jiangsu Provincial program (Project No. JSSCRC2021491).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fan Yang or Jung-Sik Kim.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4084 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Yang, F., Afzal, M. et al. Proton Conduction and Electrochemical Performance of La/Pr co-Doped Ceria Electrolyte in Ceramic Fuel Cell. Int. J. of Precis. Eng. and Manuf.-Green Tech. 11, 449–461 (2024). https://doi.org/10.1007/s40684-023-00532-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-023-00532-5

Keywords

Navigation