Skip to main content
Log in

The partial compactification of the universal centralizer

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

The universal centralizer of a semisimple algebraic group G is the family of centralizers of regular elements, parametrized by their conjugacy classes. When G is of adjoint type, we construct a smooth, log-symplectic fiberwise compactification \(\overline{{\mathcal {Z}}}\) of the universal centralizer \({\mathcal {Z}}\) by taking the closure of each fiber in the wonderful compactification \({\overline{G}}\). We use the geometry of the wonderful compactification to give an explicit description of the symplectic leaves of \(\overline{{\mathcal {Z}}}\). We also show that its compactified centralizer fibers are isomorphic to certain Hessenberg varieties—we apply this connection to compute the singular cohomology of \(\overline{{\mathcal {Z}}}\), and to study the geometry of the corresponding universal Hessenberg family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abe, H., Crooks, P.: Hessenberg varieties, Slodowy slices, and integrable systems. Math. Z. 291, 1093–1132 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abe, H., Fujita, N., Zen, H.: Geometry of regular Hessenberg varieties. Transf. Groups 25(2), 305–333 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  3. Balibanu, A.: The Peterson variety and the wonderful compactification. Represent. Theory 21, 132–150 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Behrend, K., Bryan, J., Szendroi, B.: Motivic degree zero Donaldson–Thomas invariants. Invent. Math. 192, 111–160 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bezrukavnikov, R., Finkelberg, M., Mirkovic, I.: Equivariant \(K\)-homology of affine Grassmannian and Toda lattice. Compos. Math. 141, 746–768 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bezrukavnikov, R., Finkelberg, S.: Equivariant Satake category and Kostant–Whittaker reduction. Mosc. Math. J. 8(1), 39–72 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bialynicki-Birula, A.: Some theorems on actions of algebraic groups. Ann. Math. 98(3), 480–497 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  8. Braverman, A., Finkelberg, M., Nakajima, H.: Towards a mathematical definition of Coulomb branches of 3-dimensional \({\cal{N} }\)=4 Gauge theories, II. Adv. Theor. Math. Phys. 22, 1071–1147 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Braverman, A., Finkelberg, M., Nakajima, H.: Coulomb branches of \(3\)d \({\cal{N} }=4\) quiver gauge theories and slices in the affine Grassmannian, (with two appendices by A. Braverman, M. Finkelberg, J. Kamnitzer, R. Kodera, H. Nakajima, B. Webster, and A. Weekes). Adv. Theor. Math. Phys. 23, 75–166 (2019)

    Article  MathSciNet  Google Scholar 

  10. Brion, M.: Vanishing theorems for Dolbeault cohomology of log-homogeneous varieties. Tohoku Math. J. 61(3), 365–392 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brion, M., Kumar, S.: Frobenius Splitting Methods in Geometry and Representation Theory. Birkhäuser, Basel (2005)

    Book  MATH  Google Scholar 

  12. Brosnan, P., Chow, T.: Unit interval orders and the dot action on the cohomology of regular semisimple Hessenberg varieties. Adv. Math. 329, 955–1001 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chriss, N., Ginzburg, V.: Representation Theory and Complex Geometry. Birkhäuser, Basel (2010)

    Book  MATH  Google Scholar 

  14. Crooks, P., Roser, M.: Hessenberg varieties and Poisson slices. Contemporary Mathematics of the AMS. to appear

  15. Crooks, P., Roser, M.: The log symplectic geometry of Poisson slices. J. Symplectic Geom. 20(1), 135–190 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  16. de Concini, C., Procesi, C.: Complete symmetric varieties. In: Invariant Theory. Springer, Berlin, Heidelberg (1983)

  17. De Mari, F., Procesi, C., Shayman, M.: Hessenberg varieties. Trans. Am. Math. Soc. 332(2), 529–534 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Deopurkar, A., Han, C.: Stable log surfaces, admissible covers, and canonical curves of genus \(4\). Trans. Am. Math. Soc. 374(1), 589–641 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Evens, S., Jones, B.F.: On the wonderful compactification. ArXiv e-prints (2008). arXiv:0801.0456

  20. Frejlich, P., Marcut, I.: The normal form theorem around Poisson transversals. Pac. J. Math. 287(2), 371–391 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gan, W.L., Ginzburg, V.: Quantization of Slodowy slices. Int. Math. Res. Not. 2002(5), 243–255 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Goresky, M., Kottwitz, R., MacPherson, R.: Purity of equivalued affine Springer fibers. Represent. Theory 10, 130–146 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gualtieri, M., Li, S., Pelayo, A., Ratiu, T.: The tropical momentum map: a classification of toric log-symplectic manifolds. Math. Ann. 367(3–4), 1217–1258 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Harada, M., Tymoczko, J.: Poset pinball, GKM-compatible subspaces, and Hessenberg varieties. J. Math. Soc. Jpn. 69(3), 945–994 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Knop, F.: A Harish–Chandra isomorphism for reductive group actions. Ann. Math. 140(2), 253–288 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kollar, J.: Families of Varieties of General Type. Cambridge University Press, Cambridge (2023)

    Book  MATH  Google Scholar 

  27. Kostant, B.: Lie group representations on polynomial rings. Bull. Am. Math. Soc. 69(4), 518–526 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kostant, B.: On Whittaker vectors and representation theory. Invent. Math. 48, 101–184 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kostant, B.: The solution to a generalized Toda lattice and representation theory. Adv. Math. 34(3), 195–338 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kostant, B.: Flag manifold quantum cohomology, the Toda lattice, and the representation with highest weight \(\rho \). Sel. Math. 2(1), 43–91 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  31. Laurent-Gengoux, C., Pichereau, A., Vanhaecke, P.: Poisson Structures. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  32. Matsusaka, T., Mumford, D.: Two fundamental theorems on deformations of polarized varieties. Am. J. Math. 86(3), 668–684 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Nakajima, H.: Introduction to a provisional mathematical definition of Coulomb branches of \(3\)-dimensional \({\cal{N}}=4\) gauge theories. In: Modern Geometry: A Celebration of the Work of Simon Donaldson. Proceedings of Symposia of Pure Mathematics (2018)

  34. Ngo, B.C.: Fibration de Hitchin et endoscopie. Invent. Math. 164(2), 399–453 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ngo, B.C.: Le lemme fondamental pour les algèbres de Lie. Publ. Math. Inst. Hautes Études Sci. 111, 1–169 (2010)

    Article  MATH  Google Scholar 

  36. Precup, M.: The connectedness of Hessenberg varieties. J. Algebra 437, 34–43 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Precup, M.: The Betti numbers of regular Hessenberg varieties are palindromic. Transf. Groups 23(2), 491–499 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Pym, B.: Constructions and classifications of projective Poisson varieties. Lett. Math. Phys. 108, 573–632 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. Rietsch, K.: Quantum cohomology rings of Grassmannians and total positivity. Duke Math. J. 110(3), 523–553 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  40. Rietsch, K.: Totally positive Toeplitz matrices and quantum cohomology of partial flag varieties. J. Am. Math. Soc. 16(2), 363–392 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sernesi, E.: Deformations of Algebraic Schemes. Springer, Berlin (2006)

    MATH  Google Scholar 

  42. Shareshian, J., Wachs, M.L.: Chromatic quasisymmetric functions. Adv. Math. 295, 497–551 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank Victor Ginzburg, Sam Evens, Ioan Mărcuţ, Sergei Sagatov, and Travis Schedler for many interesting discussions. Part of this work was completed while the author was supported by a National Science Foundation MSPRF under award DMS–1902921.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Bălibanu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bălibanu, A. The partial compactification of the universal centralizer. Sel. Math. New Ser. 29, 85 (2023). https://doi.org/10.1007/s00029-023-00873-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-023-00873-8

Mathematics Subject Classification

Navigation