Skip to main content
Log in

Carbonized Polyaniline as a Catalyst for Hydrogenation with Molecular Hydrogen of Organic Substrates with C=C Double Bond and Nitro Group

  • Published:
Theoretical and Experimental Chemistry Aims and scope

Nitrogen-doped carbon, which is characterized by a large surface area and the presence of micro- and mesopores, has been obtained by pyrolysis of polyaniline (emeraldine base) in a reducing atmosphere. It is found that the surface layer of such material contains nitrogen in pyridinic, pyrrolic, and quaternary configurations, as well as hydroxyl and carbonyl groups. It is shown that carbonized polyaniline reveals catalytic properties in the processes of gas-phase and liquid-phase hydrogenation with molecular hydrogen of organic substrates containing C=C double bond and nitro group (ethylene, α-methylstyrene, p-nitrotoluene) are revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. D. S. Su, S. Perathoner, and G. Centi, Chem. Rev., 113, 5782-5816 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. S. Navalon, A. Dhakshinamoorthy, M. Alvaro, et al., Chem. Soc. Rev., 46, 4501-4529 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. M. Antonietti, N. Lopez-Salas, and A. Primo, Adv. Mater., 31, Art. 1805719 (2019).

  4. I. B. Bychko, A. A. Abakumov, and P. E. Strizhak, Theor. Exp. Chem., 55, 274-279 (2019).

    Article  CAS  Google Scholar 

  5. I. Bychko and P. Strizhak, Fuller. Nanotub. Carbon Nanostructures, 26, 804-809 (2018).

    Article  CAS  Google Scholar 

  6. A. Primo, F. Neatu, M. Florea, et al., Nat. Commun., 5, Art. 5291 (2014).

  7. M.-M. Trandafir, M. Florea, F. Neatu, et al., ChemSusChem., 9, 1565-1569 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. R. Liu, F. Li, C. Chen, et al., Catal. Sci. Technol., 7, 1217-1226 (2017).

    CAS  Google Scholar 

  9. Y. Ding, X. Huang, X. Yi, et al., Angew. Chem. Int. Ed., 57, 13800-13804 (2018).

    Article  CAS  Google Scholar 

  10. G. Ciric-Marjanovic, I. Pasti, N. Gavrilov, et al., Chem. Pap., 67, 781-813 (2018).

    Google Scholar 

  11. J. Stejskal and R. G. Gilbert, Pure Appl. Chem., 74, 857-867 (2002).

    Article  CAS  Google Scholar 

  12. S. Borros Gomez and E I. F., J. Anal. Appl. Pyrolysis, 55, 247-253 (2000).

  13. Z. B. Lei, M. Y. Zhao, L. Q. Dang, et al., J. Mater. Chem., 19, 5985-5995 (2009).

    Article  CAS  Google Scholar 

  14. J. Robertson, Mater. Sci. Eng. R Rep., 37, 129-281 (2002).

    Article  Google Scholar 

  15. J. J. Langer and S. Golczak, Polym. Degrad. Stab., 92, 330-334 (2007).

    Article  CAS  Google Scholar 

  16. S. Mentus, G. Ciric-Marjanovic, M. Trchova, and J. Stejskal, Nanotechnology, 20, 245601 (2009).

    Article  PubMed  Google Scholar 

  17. O. Pariiska, D. Mazur, Y. Kurys, et al., J. Solid State Electrochem., 25, 2309-2319 (2021).

    Article  CAS  Google Scholar 

  18. T. C. Nagaiah, A. Bordoloi, M .D. Sbnchez, et al., ChemSusChem., 5, 637-641 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. J. R. Pels, F. Kapteijn, J. A. Moulijn, et al., Carbon, 33, 1641-1653 (1995).

    Article  CAS  Google Scholar 

  20. R. Arrigo, M. Havecker, R. Schlogl, and D. S. Su, Chem. Commun., 4891-4893 (2008).

  21. M. Perez-Cadenas, C. Moreno-Castilla, F. Carrasco-Marin, and A. F. Perez-Cadenas, Langmuir, 25, 466-470 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Y. Chi, S. Zheng, X. Zhang, and G. Li, Int. J. Hydrog. Energy, 46, 36124-36136 (2021).

    Article  CAS  Google Scholar 

  23. G. Li, S. Zheng, L. Wang, and X. Zhang, ACS Omega, 5, 7519-7528 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. J. Shan, X. Sun, S. Zheng, et al., Carbon, 146, 60-69 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author I. B. Bychko expresses his gratitude to the CERIC-ERIC Consortium for the opportunity to conduct X-ray photoelectron spectroscopy measurements at Charles University in Prague and for financial support under proposal No. 20202078.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. I. Kurys.

Additional information

Translated from Teoretychna ta Eksperymentalna Khimiya, Vol. 59, No. 3, pp. 167-172, May-June, 2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurys, Y.I., Bychko, I.B., Pariiska, O.O. et al. Carbonized Polyaniline as a Catalyst for Hydrogenation with Molecular Hydrogen of Organic Substrates with C=C Double Bond and Nitro Group. Theor Exp Chem 59, 193–199 (2023). https://doi.org/10.1007/s11237-023-09778-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-023-09778-1

Keywords

Navigation