Skip to main content
Log in

Comparison of Olfactory Sensilla Structure in Littoral and Deep-water Amphipods from the Baikal Region

  • Published:
Inland Water Biology Aims and scope Submit manuscript

Abstract

The structure of olfactory sensilla was compared in amphipods from the Baikal region, namely in nine Baikal species (Ommatogammarus carneolus melanophthalmus Bazikalova, 1945; O. flavus (Dybowsky, 1874); O. albinus (Dybowsky, 1874); Eulimnogammarus verrucosus (Gerstfeldt, 1858); E. vittatus (Dybowsky, 1874); E. cyaneus (Dybowsky, 1874); Acanthogammarus godlewskii (Dybowsky, 1874); Pallasea cancelloides (Gerstfeldt, 1858); and Gmelinoides fasciatus (Stebbing, 1899)) and a Holarctic species, Gammarus lacustris Sars, 1863. The results of the study demonstrate the comparison of aesthetasc lengths and numbers, as well as SEM images of the aesthetascs for Baikal amphipods for the first time. Our results confirm and complement the previously obtained data on the number of aesthetascs per segment for three deep-water Baikal amphipod species of the genus Ommatogammarus. Within the studied deep-water amphipods with different habitat depth ranges, Ommatogammarus albinus (Dybowsky, 1874), inhabiting maximum habitat depths, have the highest number of aesthetascs. The size and number of aesthetascs did not differ between males and females of the littoral Eulimnogammarus verrucosus (Gerstfeldt, 1858) and deep-water species. The littoral amphipods were shown to have more antennae I equipped with mechanoreceptors than deep-water amphipods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Arfianti, T., Biodiversity and biogeography of Amphipod Crustaceans, Doctoral Dissertation, Auckland: ResearchSpace, 2020. https://researchspace.auckland.ac.nz/handle/2292/53402.

    Google Scholar 

  2. Bazikalova, A.Ya., Lake Baikal amphipods, Tr. Baik. Limnol. Stn., 1945, vol. 11, p. 1.

    Google Scholar 

  3. Bedulina, D.S., Shatilina, Zh.M., and Gurkov, A.N., Physi-ological and biochemical markers of stress response of endemic amphipods from Lake Baikal: Current state and perspectives, Izv. Irkutsk. Gos. Univ., Ser.: Biol. Ekol., 2018, vol. 23, p. 3.

    Google Scholar 

  4. Breithaupt, T. and Thiel, M., Chemical Communication in Crustaceans, New York: Springer Science and Business Media, 2011.

    Book  Google Scholar 

  5. Derby, C. and Thiel, M., The Natural History of the Crustacea, vol. 3: Nervous systems and control of behavior, Oxford Univ., 2014.

  6. Derby, C.D., Kozma, M.T., Senatore, A., and Schmidt, M., Molecular mechanisms of reception and perireception in crustacean chemoreception: a comparative review, Chem. Senses, 2016, vol. 41, no. 5, p. 381. https://doi.org/10.1093/chemse/bjw057

    Article  CAS  PubMed  Google Scholar 

  7. Gurkov, A., Rivarola-Duarte, L., Bedulina, D., et al., Indication of ongoing amphipod speciation in Lake Baikal by genetic structures within endemic species, BMC Evol. Biol., 2019, vol. 19, p. 1. https://doi.org/10.1186/s12862-019-1470-8

    Article  CAS  Google Scholar 

  8. Hallberg, E., Johansson, K.U.I., and Elofsson, R., The aesthetasc concept: structural vatiations of putative olfactory receptor cell complexes in Crustacea, Microsc. Res. Tech., 1992, vol. 22, no. 4, p. 325. https://doi.org/10.1002/jemt.1070220403

    Article  CAS  PubMed  Google Scholar 

  9. Jamieson, A.J., Fujii, T., Mayor, D.J., et al., Hadal trenches: the ecology of the deepest places on Earth, Trends Ecol. Evol., 2010, vol. 25, no. 3, p. 190. https://doi.org/10.1016/j.tree.2009.09.009

    Article  PubMed  Google Scholar 

  10. Jaume, D., Cartes, J.E., and Sorbe, J.C., A new species of Bathymedon Sars, 1892 (Amphipoda: Oedicerotidae) from the western Mediterranean bathyal floor, Sci. Mar., 1998, vol. 62, no. 4, p. 341.

    Article  Google Scholar 

  11. Johansson, K.U.I. and Hallberg, E., Male-specific structures in the olfactory system of mysids (Mysidacea; Crustacea), Cell Tissue Res., 1992, vol. 268, no. 2, p. 359.

    Article  Google Scholar 

  12. Kamio, M. and Derby, C.D., Finding food: how marine invertebrates use chemical cues to track and select food, Nat. Prod. Rep., 2017, vol. 34, no. 5, p. 514. https://doi.org/10.1039/C6NP00121A

    Article  CAS  PubMed  Google Scholar 

  13. Kassambara, A., 2020. ggpubr: ‘ggplot2’ based Publication Ready Plots, R Package Version 0.4.0. 2020. https://CRAN.R-project.org/package=ggpubr.

  14. Katoh, K. and Standley, D.M., MAFFT multiple sequence alignment software version 7: improvements in performance and usability, Mol. Biol. Evol., 2013, vol. 30, no. 4, p. 772. https://doi.org/10.1093/molbev/mst010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kaufmann, R.S., Structure and function of chemoreceptors in scavenging lysianassoid amphipods, J. Crustacean Biol., 1994, vol. 14, no. 1, p. 54. https://doi.org/10.1163/193724094X00470

    Article  Google Scholar 

  16. Laverack, M.S., The diversity of chemoreceptors, in Sensory Biology of Aquatic Animals, New York: Springer, 1988. https://doi.org/10.1007/978-1-4612-3714-3_11

  17. Mekhanikova, I.V., Aestetasks location – antennal sensory organs in some species of Baikal amphipods (Crustacea, Amphipoda), in Ekologicheskie, fiziologicheskie i parazitologicheskie issledovaniya presnovodnykh amfipod (Ecological, Physiological and Parasitological Studies of Freshwater Amphipods), Irkutsk: Irkutsk. Univ., 2002.

  18. Mekhanikova, I.V., Calceoli: Antennal Sensory Organs of Amphipods (Crustacea, Amphipoda, Gammaridea) from Lake Baikal, Biol. Bull., 2021, vol. 48, p. 1250.

    Article  Google Scholar 

  19. Minh, B.Q., Schmidt, H.A., Chernomor, O., et al., 2020. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era, Mol. Biol. Evol., vol. 37, no. 5, p. 1530. https://doi.org/10.1093/molbev/msaa015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Moskalenko, V.N., Neretina, T.V., and Yampolsky, L.Y., 2020. To the origin of Lake Baikal endemic gammarid radiations, with description of two new Eulimnogammarus spp., Zootaxa, vol. 4766, no. 3, p. 457. https://doi.org/10.11646/zootaxa.4766.3.5

    Article  Google Scholar 

  21. Naumenko, S.A., Logacheva, M.D., and Popova, N.V., Transcriptome-based phylogeny of endemic Lake Baikal amphipod species flock: fast speciation accompanied by frequent episodes of positive selection, Mol. Ecol, 2017, vol. 26, no. 2, p. 536. https://doi.org/10.1111/mec.13927

    Article  CAS  PubMed  Google Scholar 

  22. Okonechnikov, K., Golosova, O., Fursov, M., and Team, U., Unipro UGENE: a unified bioinformatics toolkit, Bioinformatics, 2012, vol. 28, no. 8, p. 1166. https://doi.org/10.1093/bioinformatics/bts091

    Article  CAS  PubMed  Google Scholar 

  23. Pravin, S., Mellon, D., Berger, E.J., and Reidenbach, M.A., Effects of sensilla morphology on mechanosensory sensitivity in the crayfish, Bioinspir. Biomim., 2015, vol. 10, no. 3, p. 036006. https://doi.org/10.1088/1748-3190/10/3/036006

    Article  PubMed  Google Scholar 

  24. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, 2022.

    Google Scholar 

  25. Rivarola-Duarte, L., Otto, C., Jühling, F., et al., A first glimpse at the genome of the Baikalian amphipod Eulimnogammarus verrucosus, J. Exp. Zool., Part B, 2014, vol. 322, no. 3, p. 177. https://doi.org/10.1002/jez.b.22560

    Article  CAS  Google Scholar 

  26. Rusinek, O.T., Takhteev, V.V., Gladkochub, D.P., et al., 2012. Baikalovedenie (Baikal Research), Novosibirsk: Nauka, 2012, vol. 2.

    Google Scholar 

  27. Sainte-Marie, B. and Hargrave, B.T., Estimation of scavenger abundance and distance of attraction to bait, Mar. Biol., 1987, vol. 94, no. 3, p. 431. https://doi.org/10.1007/BF00428250

    Article  Google Scholar 

  28. Schmidt, M. and Gnatzy, W., 1984. Are the funnel-canal organs the ‘campaniform sensilla’ of the shore crab, Carcinus maenas (Decapoda, Crustacea)?, Cell Tissue Res., vol. 237, no. 1, p. 81. https://doi.org/10.1007/BF00229202

    Article  CAS  PubMed  Google Scholar 

  29. Schneider, C.A., Rasband, W.S., and Eliceiri, K.W., NIH Image to ImageJ: 25 years of image analysis, Nat. Methods, 2012, vol. 9, no. 7, p. 671. https://doi.org/10.1038/nmeth.2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sidorov, D.A., Pseudocrangonyx kseniae, a new species of Amphipoda (Crustacea, Pseudocrangonyctidae) from subterranean waters of Southern Primorye, Zool. Zh., 2012, vol. 91, no. 1, p. 30.

    Google Scholar 

  31. Urbschat, N. and Scholtz, G., Comparative analysis of the antennae of three amphipod species with different lifestyles, Arthropod Struct. Dev., 2019, vol. 53, p. 100886. https://doi.org/10.1016/j.asd.2019.100886

    Article  PubMed  Google Scholar 

  32. Vrijenhoek, R., DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates, Mol. Mar. Biol. Biotechnol., 1994, vol. 3, p. 294.

    PubMed  Google Scholar 

  33. Watling, L. and Thiel, M., The Natural History of the Crustacea, vol. 1: Functional morphology and diversity, Oxford Univ., 2013.

  34. Wickham, H., ggplot2: Elegant Graphics for Data Analysis, Berlin: Springer, 2016.

  35. Yu, G., Smith, D.K., Zhu, H., et al., GGTREE: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data, Methods Ecol. Evol., 2017, vol. 8, no. 1, p. 28. https://doi.org/10.1111/2041-210X.12628

    Article  Google Scholar 

Download references

Funding

This study was supported by a grant from the Russian Science Foundation, no. 22-14-00128 (https://rscf.ru/project/22-14-00128/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. A. Shirokova.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by P. Kuchina

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirokova, Y.A., Saranchina, A.E., Shatilina, Z.M. et al. Comparison of Olfactory Sensilla Structure in Littoral and Deep-water Amphipods from the Baikal Region. Inland Water Biol 16, 873–883 (2023). https://doi.org/10.1134/S1995082923050140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995082923050140

Keywords:

Navigation