Skip to main content
Log in

Hematological Parameters of the Australian Red Claw Crayfish Cherax quadricarinatus (Decapoda: Parastacidae) When Exposed to Air

  • Published:
Inland Water Biology Aims and scope Submit manuscript

Abstract

The effect of exposure on the hematological parameters of the red claw crayfish Cherax quadricarinatus Von Martens 1868 has been studied. The hemolymph is taken immediately after extraction from the water after 2, 4, and 8 h of exposure on the shore and 24 and 72 h after returning to the water. The total hemocyte counts (THCs), hemogram, general protein, and hemocyanin disease are determined. The dynamics of the growth of hematological parameters in the temporal aspect is revealed: THC and the proportion of granulocytes increase to reveal the entire pattern of growth, the proportion of agranulocytes, and the total content of protein and hemocyanin. After exposure on the shore, the color of the hemolymph changes from bluish with a grayish tint to cloudy gray-green (deviation from the norm). The data indicate the development of compensatory factors and pathological properties in response to stress and the occurrence of symptoms in the air, which can be used in practice in assessing the state of the red claw crayfish in the process of transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Alexandrova, E.H. and Kovatcheva, N.P., In life determination of the physiological status of decapod crustaceans (Crustacea: Decapoda) by hematological characteristics, Usp. Fiziol. Nauk, 2010, vol. 41, no. 2, p. 51.

    Google Scholar 

  2. Battison, A., Cawthorn, R., and Horney, B., Classification of Homarus americanus hemocytes and the use of differential hemocyte counts in lobsters infected with Aerococcus viridans var. homari (Gaffkemia), J. Invertebr. Pathol., 2003, vol. 84, p. 177. https://doi.org/10.1016/j.jip.2003.11.005

    Article  PubMed  Google Scholar 

  3. Beatty, S., Ramsay, A., Pinder, A., and Morgan, D., Reservoirs act as footholds for an invasive freshwater crayfish, Pac. Conserv. Biol., 2019, vol. 26. https://doi.org/10.1071/PC19012

  4. Bernardi, C., Baggiani, L., Tirloni, E., et al., Hemolymph parameters as physiological biomarkers in American lobster (Homarus americanus) for monitoring the effects of two commercial maintenance methods, Fish. Res., 2015, vol. 161, p. 280. https://doi.org/10.1016/j.fishres.2014.08.013

    Article  Google Scholar 

  5. Chang, E.S., Stressed-out lobsters: crustacean hyperglycemic hormone and stress proteins, Integr. Comp. Biol., 2005, vol. 45, no. 1, p. 43. https://doi.org/10.1093/icb/45.1.43

    Article  CAS  PubMed  Google Scholar 

  6. Cheng, W., Liu, C., and Kuo, C., Effects of dissolved oxygen on hemolymph parameters of freshwater giant prawn Macrobrachium rosenbergii (de Man), Aquaculture, 2003, vol. 220, p. 843. https://doi.org/10.1016/S0044-8486(02)00534-3

    Article  CAS  Google Scholar 

  7. Claussen, D.L., Hopper, R.A., and Sanker, A.M., The effects of temperature, body size, and hydration state on the terrestrial locomotion of the crayfish Orconectes rusticus, J. Crustacean Biol., 2000, vol. 20, no. 2, p. 218. https://doi.org/10.1163/20021975-99990033

    Article  Google Scholar 

  8. Coughran, J. and Leckie, S., Invasion of a New South Wales stream by the tropical crayfish, Cherax quadricarinatus (von Martens), R. Zool. Soc. New South Wales, 2007. https://doi.org/10.7882/FS.2007.007

  9. Dong, Z., Mao, S., Chen, Y., et al., Effects of air-exposure stress on the survival rate and physiology of the swimming crab Portunus trituberculatus, Aquaculture, 2019, vol. 500, p. 429.https://doi.org/10.1016/j.aquaculture.2018.10

  10. Fotedar, S., Tsvetnenko, E., and Evans, L., Effect of air exposure on the immune system of the rock lobster Panulirus cygnus, Mar. Freshwater Res., 2001, vol. 52, no. 8, p. 1351. https://doi.org/10.1071/MF01098

    Article  Google Scholar 

  11. Grote, J.R., The effect of load on locomotion in crayfish, J. Exp. Biol., 1981, vol. 92, no. 1, p. 277. https://doi.org/10.1242/jeb.92.1.277

    Article  Google Scholar 

  12. Hall, M.R., and Ham, E.H., The effects of different types of stress on blood glucose in the giant tiger prawn, Penaeus monodon, J. World Aquacult. Soc., 1998, vol. 29, no. 3, p. 290. https://doi.org/10.1111/j.1749-7345.1998.tb00649.x

    Article  Google Scholar 

  13. Huner, J.V. and Lindqvist, O.V., Physiological adaptations of freshwater crayfishes that permit successful aquacultural enterprises, Integr. Comp. Biol., 1995, vol. 35, p. 12. https://doi.org/10.1093/icb/35.1.12

    Article  Google Scholar 

  14. Jackson, D.C., Wang, T., Koldkjaer, P., and Taylor, E.W., Lactate sequestration in the carapace of the crayfish Austropotamobius pallipes during exposure in air, J. Exp. Biol., 2001, vol. 204, no. 5, p. 941. https://doi.org/10.1242/jeb.204.5.941

    Article  CAS  PubMed  Google Scholar 

  15. Jones, C.M., The Biology and Aquaculture Potential of the Tropical Freshwater Crayfish, Cherax quadricarinatus, Report No. QI90028, Brisbane: Dep. Primary Ind., Queensland, 1990, p. 109.

  16. Jussila, J., Paganini, M., Mansfield, S., and Evans, L.H., On physiological responses, plasma glucose, total hemocyte counts and dehydration, of marron Cherax tenuimanus (Smith) to handling and transportation under simulated conditions, Freshwater Crayfish, 1999a, vol. 12, p. 154.

    Google Scholar 

  17. Jussila, J., Jago, J., Tsvetnenko, E., and Evans, L.H., Effects of handling or injury disturbance on total hemocyte counts in western rock lobster (Panulirus cygnus George), International Symposium on Lobster Health Management, Adelaide, 1999b.

  18. Kerby, J.L., Riley, SP.D., Kats, L.B., and Wilson, P., Barriers and flow as limiting factors in the spread of an invasive crayfish (Procambarus clarkii) in Southern California streams, Biol. Conserv., 2005, vol. 126, p. 402. https://doi.org/10.1016/j.biocon.2005.06.020

    Article  Google Scholar 

  19. Kladchenko, E.S., Andreyeva, A.Yu., and Kukhareva, T.A., Effect of ranged short-term hypoxia on functional and morphological parameters of hemocytes in the pacific oyster Crassostrea gigas (Thunberg, 1793), J. Evol. Biochem. Physiol., 2022, vol. 58, p. 45. https://doi.org/10.31857/S004445292201003X

    Article  CAS  Google Scholar 

  20. Kouba, A., Tíkal, J., Císar, P., et al., The significance of droughts for hyporheic dwellers: evidence from freshwater crayfish, Sci. Rep., 2016, vol. 6, p. 26569. https://doi.org/10.1038/srep26569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kovatcheva, N.P. and Aleksandrova, E.N., Gematologicheskie pokazateli kak indikatory fiziologicheskogo sostoyaniya dekapod: kamchatskogo kraba Paralithodes camtschaticus i rechnykh rakov rodov Astacus i Pontastacus (Hematological Parameters as Indicators of Physiological Status of the Decapods: Red King Crab Paralithodes Camttshaticus and Freshwater Crayfish Genus Astacus and Pontastacus), Moscow: Vseross. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr., 2010.

  22. Lagutkina, L.Yu., Kuzmina, E.G., Taranina, A.A., Ahmedzhanova, A.B., et al.,. Providing factual support for efficient techniques of breeding tropical freshwater species, Vestn. Astrakh. Gos. Tekh. Univ., 2020, no. 2, p. 94.

  23. Leland, J.C., Coughran, J., and Furse, J.M., Further translocation of the Redclaw, Cherax quadricarinatus (Decapoda: Parastacidae), to Lake Ainsworth in northeastern New South Wales, Australia, Crustacean Res. Special Number, 2012, vol. 7, p. 1. https://doi.org/10.18353/crustacea.Special2012.7_1

    Article  Google Scholar 

  24. Lemmers, P., Kroon, R., Kleef, H., et al., Limiting burrowing activity and overland dispersal of the invasive alien red swamp crayfish Procambarus clarkii by sophisticated design of watercourses, Ecol. Eng., 2022, vol. 185, p. 106787. https://doi.org/10.1016/j.ecoleng.2022.106787

    Article  Google Scholar 

  25. Li, F., Zheng, Z., Li, H., et al., Crayfish hemocytes develop along the granular cell lineage, Sci. Rep., 2021, vol. 11, no. 1, p. 13099. https://doi.org/10.1038/s41598-021-92473-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lorenzon, S., Giulianini, P.G., Martinis, M., and Ferrero, E.A., Stress effect of different temperatures and air exposure during transport on physiological profiles in the American lobster Homarus americanus, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 2007, vol. 147, no. 1, p. 94. https://doi.org/10.1016/j.cbpa.2006.11.028

    Article  CAS  Google Scholar 

  27. Lorenzon, S., Giulianini, P.G., Libralato, S., et al., Stress effect of two different transport systems on the physiological profiles of the crab Cancer pagurus, Aquaculture, 2008, vol. 278, p. 156.https://doi.org/10.1016/j.aquaculture.2008.03.011

  28. Lu, Y.-P., Zhang, X.-X., Zheng, P.-H., et al., Effects of air exposure on survival, histological structure, non-specific immunity and gene expression of red claw crayfish (Cherax quadricarinatus), Aquacult. Rep., 2021, vol. 21, p. 100898. https://doi.org/10.1016/j.aqrep.2021.100898

    Article  Google Scholar 

  29. Malev, O., Šrut, M., Maguire, I., et al., Genotoxic, physiological and immunological effects caused by temperature increase, air exposure or food deprivation in freshwater crayfish Astacus leptodactylus, Comp. Biochem. Physiol., Part C, 2010, vol. 152, no. 4, p. 433. https://doi.org/10.1016/j.cbpc.2010.07.006

    Article  CAS  Google Scholar 

  30. Martynova, M.G., Bystrova, O.A.,nand Parfenov, V.N., Synthesis of nucleic acids and localization of atrial natriuretic peptide in the crayfish haemocytes, Cell Tissue Biol., 2008, vol. 2, p. 158.

    Article  Google Scholar 

  31. Morris, S. and Callaghan, J., The emersion response of the Australian Yabby Cherax destructor to environmental hypoxia and the respiratory and metabolic responses to consequent air-breathing, J. Comp. Physiol., B, 1998, vol. 168, no. 5, p. 389. https://doi.org/10.1007/s003600050158

    Article  Google Scholar 

  32. Morris, S. and Oliver, S., Circulatory, respiratory and metabolic response to emersion and low temperature of Jasus edwardsii: simulation studies of shipping methods, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 1999, vol. 122, no. 3, p. 299. https://doi.org/10.1016/S1095-6433(99)00003-3

    Article  Google Scholar 

  33. Nickerson, K.W. and Van Holde, K.E., A comparison of molluscan and arthropod hemocyanin. I. Circular dichroism and absorption spectra, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 1971, vol. 39, p. 855. https://doi.org/10.1016/0305-0491(71)90109-X

    Article  CAS  Google Scholar 

  34. Paterson, B.D. and Spanoghe, P.T., Stress indicators in marine decapod crustaceans, with particular reference to the grading of western rock lobsters (Panulirus cygnus) during commercial handling, Mar. Freshwater Res., 1997, vol. 48, no. 8, p. 829. https://doi.org/10.1071/MF97137

    Article  CAS  Google Scholar 

  35. Paterson, B.D., Spanogle, P.T., Davidson, G.W., et al., Prediction survival of western rock lobster Panuluris cygnus, using discriminant analysis of hemolymph parameters taken immediately following simulated handling treatments, N. Z. J. Mar. Freshwater Res., 2005, vol. 39, no. 5, p. 1129. https://doi.org/10.1080/00288330.2005.9517380

    Article  Google Scholar 

  36. Pond, C.M., The role of the “walking legs” in aquatic and terrestrial locomotion of the crayfish Austropotamobius pallipes (Lereboullet), J. Exp Biol., 1975, vol. 62, no. 2, p. 447. https://doi.org/10.1242/jeb.62.2.447

    Article  Google Scholar 

  37. Powell, A., Cowing, D.M., Eriksson, S.P., and Johnson, M.L., Stress response according to transport protocol in Norway lobster, Nephrops norvegicus, Crustacean Res., 2017, vol. 46, p. 17. https://doi.org/10.18353/crustacea.46.0_17

    Article  Google Scholar 

  38. Pronina G.I. and Koryagina N.Yu., Effect of transport stress on hematological parameters of crayfish, Zootekhniya, 2011, vol. 4, p. 27.

    Google Scholar 

  39. Puky, M., Invasive Crayfish on Land: Orconectes limosus (Rafinesque, 1817) (Decapoda: Cambaridae) crossed a terrestrial barrier to move from a side arm into the Danube River at Szeremle, Hungary, Acta Zool. Bulg., 2014, vol. 7, p. 143.

    Google Scholar 

  40. Qing, Li., He, B., Chen, Y., et al., Factors inducing the crayfish Procambarus clarkii Invasion and loss of diversity in Caohai wetland, Inland Water Biol., 2022, vol. 15, p. 446. https://doi.org/10.1134/S199508292204040X

    Article  Google Scholar 

  41. Ramalho, R.O. and Anastácio, P.M., Factors inducing overland movement of invasive crayfish (Procambarus clarkii) in a ricefield habitat, Hydrobiologia, 2015, vol. 746, p. 135. https://doi.org/10.1007/s10750-014-2052-9

    Article  Google Scholar 

  42. Sequeira, T., Tavares, D., and Arala-Chaves, M., Evidence for circulating hemocyte proliferation in the shrimp Penaeus japonicas, Dev. Comp. Immunol., 1996, vol. 20, no. 2, p. 97. https://doi.org/10.1016/0145-305x(96)00001-8

    Article  CAS  PubMed  Google Scholar 

  43. Skafar, D.N. and Shumeyko, D.V., Hemocytes of the Australian red claw crayfish (Cherax quadricarinatus): morphology and hemogram, J. Evol. Biochem. Physiol., 2022, vol. 58. p. 1730.

    Article  CAS  Google Scholar 

  44. Söderhäll, I., Bangyeekhun, E., Mayo, S., and Söderhäll, K., Hemocyte production and maturation in an invertebrate animal; proliferation and gene expression in hematopoietic stem cells of Pacifastacus leniusculus, Dev. Comp. Immunol., 2003, vol. 27, no. 8, p. 661. https://doi.org/10.1016/s0145-305x(03)00039-9

    Article  PubMed  Google Scholar 

  45. Souty-Grosset, C., Anastácio, P.M., Aquiloni, L., et al., The red swamp crayfish Procambarus clarkii in Europe: Impacts on aquatic ecosystems and human well-being, Limnologica, 2016, vol. 58, p. 78. https://doi.org/10.1016/j.limno.2016.03.003

    Article  Google Scholar 

  46. Speed, S.R., Baldwin, J., Wong, R.J., and Wells, R.M.G., Metabolic characteristics of muscles in the spiny lobster, Jasus edwardsii, and responses to emersion during simulated live transport, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 2001, vol. 128, no. 3, p. 435. https://doi.org/10.1016/S1096-4959(00)00340-7

    Article  CAS  Google Scholar 

  47. Sukhachev, A.N., Dyachkov, I.S., Romanyuk, D.S., et al., Morphological analysis of hemocytes of ascidian Halocynthia aurantium, Cell Tissue Biol., 2013, vol. 55, no. 12, p. 901.

    CAS  Google Scholar 

  48. Taylor, H.H., Paterson, B.D., Wong, R.J., and Wells, R.M.G., Physiology and live transport of lobsters: report from a workshop, Mar. Freshwater Res., 1997, vol. 48, no. 8, p. 817. https://doi.org/10.1071/MF97197

    Article  Google Scholar 

  49. Webster, S.G., Measurement of crustacean hyperglycaemic hormone levels in the edible crab Cancer pagurus during emersion stress, J. Exp. Biol., 1996, vol. 199, no. 7, p. 1579. https://doi.org/10.1242/jeb.199.7.1579

    Article  CAS  PubMed  Google Scholar 

  50. Wu, M., Chen, N., Huang, C.X., et al., Effect of low temperature on globin expression, respiratory metabolic enzyme activities, and gill structure of Litopenaeus vannamei, Biochemistry (Moscow), 2017, vol. 82, p. 844. https://doi.org/10.1134/S0006297917070100

    Article  CAS  PubMed  Google Scholar 

  51. Zhang, Z.F., Shao, M., and Kang, K.H., Classifcation of haematopoietic cells and haemocytes in Chinese prawn Fenneropenaeus chinensis, Fish Shellfish Immunol., 2006, vol. 21, p. 159. https://doi.org/10.1016/j.fsi.2005.11.003

    Article  CAS  PubMed  Google Scholar 

  52. Zheng, Z., Li, F., Li, H., et al., Rapid regulation of hemocyte homeostasis in crayfish and its manipulation by viral infection, Fish Shellfish Immunol. Rep., 2021, vol. 2, p. 100035 https://doi.org/10.1016/j.fsirep.2021.100035

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to thank the editorial staff of the journal Biology of Inland Waters and anonymous reviewers for valuable comments and advice that helped improve the article.

Funding

This work was performed at the personal expense of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Skafar.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by P. Kuchina

Abbreviations: GPT, hematopoietic tissue; THC, total hemocyte count; RAS, recirculating aquaculture system.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skafar, D.N., Strelkova, O.V. & Shumeyko, D.V. Hematological Parameters of the Australian Red Claw Crayfish Cherax quadricarinatus (Decapoda: Parastacidae) When Exposed to Air. Inland Water Biol 16, 945–953 (2023). https://doi.org/10.1134/S1995082923050152

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995082923050152

Keywords:

Navigation